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Abstract of "Steady Waves in a Nonlinear Theory of Viscoelasticity"

by Gregory Thomas Warhola, Ph.D., Brown University, May 1988.

This work considers the propagation of steady waves in viscoelastic materials

for which the nonlinear strain measure is not necessarily convex. The shape of such

a wave is governed by an ordinary nonlinear integro-differential equation having

a possibly singular difference kernel. The existence and structure of a solution

depends upon the relation of the wavespeed, a parameter in the problem, to two

speeds based upon the state of the material ahead of the wave. Solutions are

constructed by a monotone iterative scheme which is proven to converge to a unique

solution within restricted classes of functions depending upon the wavespeed. A

simple numerical approximation to the iterative scheme is used to produce graphs

of solutions. An algebraic "quasielastic" approximation produces upper bounds

on discontinuous (shock and acceleration wave) solutions. For a material such as

polymethyl methacrylate (PMMA) having a small power in a power-law model of

its compliance, this approximation is found to be useful for accurately predicting

the structure of shock solutions.
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CHAPTER 1: INTRODUCTION

We are concerned with the propagation of mechanical disturbances in visco-

elastic materials. Any such a disturbance in a material is called a wave if it has

features which are clearly recognizable as it progresses through the material. In a

one-dimensional theory where x and t represent place and time, respectively, a wave

is steady if its features are described by a single shape function, say w(O), where

0 = t - x/V. The constant V is the wavespeed, the velocity of propagation of the

disturbance w.

Transient loading experiments conducted by Schuler 11.1] on the viscoelastic

material polymethyl methacrylate (PMMA) have produced waves which appear

steady over intervals of observation. In this and other viscoelastic materials having

a nonlinear dependence of the stress upon the strain, the tendency for disturbances

to dissipate due to time-dependent viscoelastic effects is opposed by the nonlin-

earity. Shock waves are produced if the loading is sufficiently high. Such waves

are mathematically characterized by a discontinuity in the material particle veloc-

ity. Kolsky has produced travelling waves in stretched natural rubber [1.2], which

waves exhibit a rapid variation in the particle velocity at the wave front.

Early mathematical investigations into the propagation of steady acceleration

and shock waves were conducted by Coleman, Gurtin, and Herrera 11.3], in which

they assumed e istence of such solutions. Acceleration waves are characterized by

a discontinuity in some derivative of the particle velocity. Such waves travel at a

critical value of wavespeed, with respect to the state of the material ahead of the

wave; shocks travel at supercritical speeds. Pipkin [1.41 demonstrated the existence

1



of steady shock and acceleration wave solutions for a specific model of a nonlinear

viscoelastic fluid. Furthermore, his treatment includes smooth solutions at sub-

critical wavespeeds. In an abstract mathematical setting, Greenberg proved the

existence of steady shock waves for a broad class of nonlinear viscoelastic materi-

als [1.5]. Greenberg and Hastings [1.61 later studied steady waves in viscoelastic

materials in a somewhat less abstract setting. A lengthy description of experimen-

tal and mathematical investigations into this subject until 1974 is contained in the

work by Nunziato et al [1.7].

p

Our goal is to study the propagation of steady waves in nonlinear viscoelastic $

materials with yet less abstraction while providing a treatment which is sufficiently

general to include useful current models of such materials. This is a purely me-

chanical treatment; no thermodynamic quantities are considered. In Chapter 2, we

provide foundation material for the rest of this work. The equations governing

material deformation are presented along with the constitutive equation describing

the viscoelastic materials considered. We describe at some length the general non-

linearity we consider, since it includes a departure from the convexity requirement

imposed in the earlier treatments [1.5] and [1.6]. We also introduce the quasi-elastic

approximation to the constitutive equation. We later find this approximation to be

accurate enough for description of shock waves in materials like PMM A.

We derive a nonlinear integro-differential equation governing steady waves in

Chapter 3. This equation contains the wavespeed as a parameter. After a brief

look at steady waves in a linear viscoelastic theory, we prove some general results

concerning steady waves in a nonlinear viscoelastic material. From these results, we

propose candidate solutions to the problem, which solutions depend upon the rela-

tion of the wavespeed to a critical value. In Chapter 4, we prove the existence and

2
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uniqueness of these steady wave solutions. We use an iteration scheme to produce

monotone sequences of successive approximations to the solution. Our approach is

in the spirit of the work of Greenberg and Hastings [1.51; however, we have relaxed

some of their hypotheses on the materials considered. Additionally, we use a dif-

ferent iteration scheme which is amenable to a simple numerical approximation for

the construction of graphs of approximate solutions.

In Chapter 5, we consider the detailed structure of steady shock and acceler-

ation waves near the discontinuity. We also discuss the continuity of such solutions

as a function of the wavespeed. We show how the information in a known solution

at a given wavespeed can be used to obtain the solution for another wavespeed.

The numerical approximation to the iteration scheme is introduced. We use it to

construct approximate solutions for shock and acceleration waves in materials char-

acterized by exponential and power-law moduli. It is here where we see that the

quasi-elastic approximation is close to the exact solution for power-law materials

having a small power. The graphs of shocks we produce are in good agreement with

the experimental results for PMMA obtained by Schuler J1.11.

The final chapter, 6, is devoted to smooth solutions below the critical (accel-

eration wave) wavespeed. We use a perturbation technique to obtain solutions for

waves of infinitesimal amplitude in a viscoelastic solid. We construct solutions via

iteration for specific examples involving power-law materials.

3
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CHAPTER 2: NONLINEAR VISCOELASTIC DEFORMATIONS

2.1 Governing Equations.

We consider one-dimensional deformations of an infinite homogeneous nonlin-

early viscoelastic body from a (possibly strained) reference configuration in which

the body is at rest and its material points (or particles) are identified with their

position x on the real line. Let u(x, t) be the displacement at x at the time i of

a particle from its reference position. We consider functions u which are continu-

ous and piecewise differentiable in each of their arguments. We write the partial

derivatives Ou(x, .)/Ox = u,(x,-) and au( ., t)lt = ut( ., t). The perturbed particle

velocity is

The perturbed strain is given by

e-(z, ) =U.(Z, t). (2.1.2)=

We normalize the extra stress o(x.t) by the mass density and write the balance of

linear momentum as

vt(x, t) = 0,(x,), (2.1.3)

where these derivatives exist. From equations (2.1.1) and (2.1.2), the compatibility

condition is

ct(x,t) = v.(x,t). (2.1.4)

The following constitutive relation defines the nonlinear viscoelastic materials con-

sidered in this work; it is a viscoelastic extension of the relation or = f(r) used in

4
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nonlinear elasticity. We consider materials for which the stress at the current time t

depends on the current strain and the entire previous strain history through the

convolution relation

If

0r(Xt) = G (t - 7)df(c(x,7)). (2.1.5)

The integral in equation (2.1.5) is a Stieltjes integral. We describe its properties

which are essential for this work in the following section. All of the nonlinearity

in the problem is embodied in the strain curve f(c), whose graph is local to the

reference state such that f(0) = 0. Further properties of the curves f that we

consider are contained in section 2.3. The function G(t) is the stress relaxation

function with units of modulus divided by mass density. Its properties are contained

in section 2.5, after a section on regularly-varying functions. We discuss some

properties of the constitutive law in section 2.6.

We note that in a more general treatment one could consider the constitutive

model

or(x,t) = Geg(E(x,t)) + 0 [(G(t - r) - Ge)]df(e (x,)), (2.1.6)

where Ge is a positive constant. In this model the equilibrium elastic stress Geg(C)

has a different nonlinear dependence on the strain than does the transient integral

term. In cases where the curves f and g are determined experimentally, this ap-

proach doubles the data required to model the nonlinearity in the problem. For

this work, we assume that the nonlinearity is characterized by a single set of these

measurements, such that f = g, in which case equation (2.1.6) reduces to (2.1.5).

del



2.2 Properties of the Stieltjes Integral.

Throughout this work we will be concerned only with functions which may

be written as the indefinite integral of their derivative, in the generalized sense

described below. Such functions have bounded variation on any finite interval. These

properties are enough to ensure the existence of the Stieltjes integral. A proof of

its existence and a collection of its properties is contained in the monograph by

Widder 12.11. We illustrate only what is needed herein. Consider, for example, the

improper integral:
J(. = I Klr,.)dplr), (2.2.1)

where p is monotone. (If p is not monotone, it can always be decomposed as

p ,- 4+ - p-, where p+ and p- are monotone.) If p(t) has a piecewise continuous

derivative p '(f), then dp(t) = p '(t)dt in equation (2.2.1), which is then evaluated

as an ordinary Riemann integral. Thus, if p(t) = t, then I reduces to the Riemann

integral of K. If, however, p has a jump at to given by

Ap(to) = lim p(t) - lim P(t), (2.2.2)
t It o  t to

then

I(.) K (to, .)Ap(t ) + 0 K (r,-) (r)dr. (2.2.4)
-00

In particular, for a function J(t) which vanishes for t < 0, has a finite value J,

at t = 0, and whose derivative is given for t > 0 by J '(t), we have

f dJ (r) = dJ (r)
-- 0

= Jo + f J '+ (ridr
0

= Jo + J(t) - Jo

= J(t). (2.2.5)

6
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Integrals like ft dJ (r) are understood to include integration of the jui p in J at .4n

endpoint of the integration interval, if such a jum p exists We use the notation f, II

to denote the restriction of f to positive values cf 1

2.3 The Strain Curve f(E).

The strain curve f(e ) is assumed to be a single-valued continuous function '-f

with a piecewise continlou, derivative f '(F) W hen the deforniations are ' all

expect that the linear theory of viscoelasticity ,%ould apply; this leads us .t ct n il.r

curves f which have [he property

f(E) - 6, E - 0 (2 3 1)

We limit discussion to functions f which are strictly greater than 6, over the range

of e considered, when the strain is non-zero:

f (C) > E, C i4 0

Sf(E) = 0, e = 0. (2.3 2)

We do not require f to be globally convex. Instead, we consider the possibly non-

convex functions whose graphs have a unique intersection with any ray from the

origin, over the range of c considered For the cases in which we are most inter-

ested, c is positive. We require that the equation

f(6) - m E = 0, M > I. (2 3 31

have a unique positive solution c, for each value of M We now showr that these

properties are suflicient for us to write any f we consider, for positive strain, as

f () m(E)E, E > 0, (2 3 4)

7
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%here tin (r e I s a continuous fu rction , inl creas Ing m oioton ii alk I froali tit 110 ) I

%~ itli A1 pi.wt ise coi tiiou. (erivativ e in '( t We AlreadN hA' s ;tit assunip-

t , in ( 2 :1 :11 th.~t -as. uniquely determined by va N oiA fit f ( , /! uniquekv

'letirriiaes in As a function of F for e > 0 Fu rt h er inore . t i (I I I follows darectIN

f roatan ( 2 3 1 ) T h ts, t he re is a on e-t o-on e relIat ion sh I I bet %een tin tit( an tit ( a s

Ili - t to iae I ropevr t (2 3 2) Implies that mn is increasing (sti. tN "Ilie",v MIs one-to-

I] v ThIe c o it Iiti of f requires that rn(tE) be continuous Sico 'Av require f '(C(

I- pl-4," s as- c11nhaaail, And since

f (6)= mn( c) + mc()c (2 35)

i rn( jinii it. to(,, he piecewise continuous

( onversely , any, function f of the form (2.3.4) necessarily has the properties

v at esire '[lie continuity of f and the piecew ise continuity of its derivative follow

from the like properties of in and m' when used in equations (2 3A4) and (2.3,51)

Properties (2 3 1) and (2.3.2) are satisfied since m (0) = I and mn is increasing

Finally, (2 3 3) has a unique solution Esince f/c = mn(c) is monotone.

A representative curve f(E) is shown in Figure 2.1 From (2.3.4), we have that

the slope of the secant from the origin to the point (c, f(E)) is mn(r). Since in(c) is

laCreasing Ae see from (2 3.5) that

f I)C M m(E) E > 0, (2.3.6)

Sith eqaaalitN if and only if in '(c) =0: the points having thias property cannot be a

leSestL since tia is strictly increasing

Equation (2 3 6) am plies that f increases monotonically when c > 0 Addi-

tian ally f increases fast enough so that the slope of the secant from the origin to

L aiW V 1%&11llurwfjo
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Figure 2. 1. A repr,"4entative strain crre f(e) (top) and the monotone function

"i I ) w h icp g4.nir ates it (b ottom) f is asy inptotic ally linear for small C At A.

the slope oif / is infinite At It, f is tangent to the secant to B from the origin
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any given point on the curve f(c), is less than the slope of the secant to the given S

point froni an% other point on the curve, w hen is p,,sitise for I,oth points

FYI 't -- (---" F : j > 0 (2 3 7 1

e pr,ve thL i first for E, > e, in which ,ase ,i( ., > m(rl) and thus, f(e.) >

i(c t " \e: e subtract f ) = ,,t(eI )f Ifrom the latter in,,uality. divide by the

,,sitl,e q ualhntit. e and obtain the ,lesired resu lt On the other hand, when

" < .0. h 0,' ,,( 2 Fit (E ) T hen f ( e <in a-jk a i f > (-"() > -

IIy ad(In g f I 'm(,le, to the latter inequahlt , and di'iding by, FI - E2, the

pr,,,)f is In 1Ivpl'tv

In the proof of (23 7), there is the tacit statement that for all 0 < c < c, the

graph of f(F) lies below the secant from the origin to the point (C., f(o)) \\e

state this separately for future use as:

f(F) < 0() , < E< E (2.3.8)

Similarly, we haves

f() > m( )e, > 60 (23.9)

Wef %rill have occasion to consider c as a function of f The above properties

of f ensur, that it has a strictly increasing inverse F. such that F(f) = E This

jn''se hais properties sini ilar to those of f

FY l- f. f ()1
(2 3 16i)

F (rf) < I, f >

I",r each positive A < I . there is a unique non -zero value of f w h ich satisfies

FP )- Mf (f (2 3 I)

I0



S o, we w rite

,(f = M ( )f, f . (2 :1 -2)

Shere At If) is the slope of the set-ant from the origin to the point (f. F(fl, on thie

u re f f ) A.h such. At (f) is the reciprocal of rn ( t

I

At(f) f > o. (2 3.!3)

and is strictly decreasing from At (0) = I Its rate of decrease is limn ited hv the

ri.,uirenint thai f be increasing Fr,,nt an equation analogous 1() (2 3 5), At must

-a Al (f)

JAl '(I l < (2.3.14)
f

ith equality only at points not belonging to a dense set. Analogous to equa-

tio4ns (2 :3 6) through (2.3.9), we have for F

F'(f) < M(f), f > 0, (2.3.15)

F(f 2 )- F~f,)
<~- - Fffj); fl 7' f2; fI, f2 > 0; (..6

f2 - ft

a n cl

F(f) < M (fo)f if and only if f fo. (2.3.17)

We will sometimes need more detailed information about the strain curve

f ,r our results For example, near the origin, we will assume that f admits the

e \ p an t 011

f(c) = c + kic + + o(e ), e f 0, (2. I )

f''r -,mle c4nstantc, k' -> 0 and - > We will also assume that the inverse f" is

t,,,U n1t,'d 1,,'1o%

f'( ) > k" - f k > , > I, (2 3 19)

ftr all values of f > 0

Ii
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2.4 Regularly-Varying Functions.

The presentation in this section is, for the most part, ident' al to that given

hy Pipkin 12.21.

Real material response functions such as G(l) vanish for I < 0 and are strictl

positive for t > 0. Because of the wide variation in both the values of G and the

time scales over which these changes take place, they are usually specified by graphs

on a doubly-logarithmic scale 12.31. Let p(I) be the slope on a doubly-logaroitmic

plot, for t > 0, of a differentiable response function f (t):

p(t) = d(ln f (t))/d(ln t) = if '(t)/f (t), (2 4.')

where f ' is the derivative of f. We note that p(t) =p if f HP11 . In the general

case, by integrating (2.4.1) we obtain

In (f (CO)/ f M1) p(Ir)(dz/r). (2-4.2)

Then if p(l) approaches a constant value p, say, as I - 00, the integral in (2,4.2)

approaches p IL(c), and thus

f (0) - 'f (0) 1 - 00. (2 4.3)

Regularly -va rytn functions are those functions for w hich f (cf)/f (t) approaches a

finite non-zero limit as I - 00, and for any such function the limit is necessarily of

the form c' as a function of the parameter c, with -00 < p < + 00 (see Feller 12 41)

F~ir such a function we write' P (f ) = p and say that p is the power of f

If equation (2 4 3) holds with p = 0) the function is slou'Ig-verying We

tise /. (t) (to suggest a logarithm) to) stand for any otherwise unispecified blowl h.

varying function Trhen

LWc) - L(t), t - 0 (2 4 4)

12



and any regularly -vary in g function f (t) can be expressed in the form

f (t) = L(t)tp, (2-4.5)

For miiany pu rposes L ran be treated as if it were constant, even though it may

diverge to zero or infinity. For exam ple, powers and products of regularly-varying

functions are also regu larly -varying, with the obvious exponents. In particular, any

function w h ih approaches a non-zero constant value is slowly-varying.

The assOIIJJtIo! that p~t) (in equation (2.4.1)) approaches a limit implies not

onlyr that f is rcgiilark.-varying but also that f ' is regularly-varying (unless f is

mnerely slowly-varying) If p(t) - p then from (2.4.1),

f - f/1

=~~~~ -~/) p0 = - . (2-4.6)

The exception for p = 0 occurs because when f is approaching a constant, f I may

le approachiing zero much faster than 1/1.

On the other hand, when f is regularly-varying its indefinite integral f, is

always regularly-v.arying 12-41. When f, diverges as t o

f1 (t) = f f(r)dr '- ,f Mp = P Uf) > -1, t1- oc, (2.4.7)
(P + 1)

jus-t as if f wecre actually a power, When p < -1I the integral (2.4.7) approaches a

constant and I liv tail of the integral is regularly -vary in g:

fXf(r)di - f() P < - I 1- 0c- . (2.4 .8)

Ilk-, r.- u ll iiab I ,its t( ( 2 4 61ib) is

t f () -- 0(f I). - I, t I 1 (2 4 9)

lThe plr>%ie1iitioni above, following Pipkin 12.2), is useful also for c-onsideration

,f fo it ct , w hic h are rei.u larly -vary ing at the origin. For, f (t) varies regularly
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at 0 if and only if f(I/t) varies regularly at oo (Feller 12.41). Thus, these results apply
I..

with t -- oco replaced by t -- 0, for functions which vary regularly with power p at

the origin. In particular, the change of variables r -- l/r in equations (2.4.7)

and (2.4.8) returns the same pair of integral results for t - 0.

We add here a result that is needed later for the convolution of two

regularly-varying functions. If f and g vanish for t < 0, and are regularly-varying

as t . o (t - 0) with powers P(f) = p and P(g) = q, then
I.

f(tp- 1) ()dr P q!
o (p+q+ 1)'tf(t)g(t); p,q> -1; t-* oo(t-q 0);

(2.4.10)

where

p! J tpe-td, p > - 1. (2.4.11)
0

To get this result, we use expressions like (2.4.5) for f and g in the convolution

integral and make the change of variables r --* tr. Then, the use of equation (2.4.4)

leaves a well-known Beta function whose value is the ratio of factorials in the result.

14



2.5 Material Response Functions.

In the linear theory of viscoelasticity our stress relaxation function G(t) gives

the time history of the stress (per unit mass density) in a viscoelastic material

which is subjected to a unit step in strain, e, at time t = 0 (see Pipkin [2.5]).

In spite of our normalization with respect to mass density, we will refer to G as

the modulus. For the nonlinear theory defined by equation (2.1.5) the stress is G(t)

when f(E(.,t)) = H(l), the Heaviside unit step function defined to be zero for t < 0

and one for t > 0. The modulus is necessarily zero for t < 0, since the current stress

cannot depend upon the future strain; the input-output relationship between the

strain and the stress is causal. With this in mind, we write the convolution (2.1.5)

as:

(X,}t) = 0 G(t - r)df(E(x,r)). (2.5.1)

We find it convenient to make operational use of such convolutions and we use the

following notation for convolution with respect to the time variable:

(f',g)(t) = g(t- r)df(r). (2.5.2)
-- 00

The limits of integration extend to :oo in the general case. We recall that con-

volution is commutative and associative, and that it also commutes with time dif-

ferentation:

(1* g) f g = f * g . (2.5.3)

In formal operational use of the convolution, we use whichever of these is convenient

at the time. W ith this notation and these propelties of the convolution, we write

the nonlinear constitutive law in terms of the modulus, once and for all as:

(z, t) = (G ' * f ()) (z, t). (2.5.4)

15



We consider moduli G which have a finite value Go at t = 0 and which decrease

to a strictly positive equilibrium value G, as i - oo. In fact, we assume that G is

completely monotone for I > 0; i.e., G is positive and decreasing, and it possesses

derivatives of all orders which satisfy:

(-i )nG I,' (t) > 0; n = 0,1,2 .... I > 0. (2.5.5)

Since Ge is nonzero, the materials we consider are viscoelastic solids 12.51. It is

convenient to allow the elastic limit, in which case G(t) = G( fI(t) G ll ().

These properties of G are enough to ensure the existence [2.5] of a

compliance J(t) which vanishes for i < 0, has a cornpletely-monotonr derivative

J (t) for t > 0, and which satisfies:

(J ' * G )(t) = I (1). (2.5.6)

The compliance takes a finite jump to J, = 1/G at t = 0 and increases monoton-

ically thereafter since J > 0. For solids J has an equilibrium value J, = 1/G,

which it approaches as i--. oo. The units of J are the inverse of those of G; in our

2case, J has units of (velocity) - . Whenever we write specific forms of G or J, we

mean their values for t > 0, and leave implicit that they vanish for I < 0.

By operating on equation (2.5.4) with J t, using (2.5.3) and (2.5.6), we obtain

the constitutive law in terms of the compliance:

f(E(Z,t)) = (J' * ) (r, 1), (2.5.7)

where we have used the fact that convolution with the Heaviside step function is just

an integration. Throughout this work we will use both versions (2.5.4) and (2.5.7)

of the constitutive law.

16
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Real material properties might be stated in terms of only one response func-

tion, the modulus or the compliance. We now present some relations between the

asymptotic behaviour of G and J, for the cases oft -+ 0 and t - o. We sometimes

assume that the difference between these functions and their initial or equilibrium

limits is regularly-varying. We do so for t - 0 and take for the modulus:

G(t) = Go(l - X1(t)), (2.5.8)

where X, is a positive regularly-varying function:

XI(t) = L(t)t P ,  0 < p <_ 1, t -- 0. (2.5.9)

The power p is restricted to these values since G must be completely monotone.

Additionally, XI must be completely monotone. Therefore, by equation (2.4.6)

(for p 5 0), so must L(t)t P - 1 . Since the product of two completely monotone

functions is again completely monotone (Feller [2.41), any completely monotone

slowly-varying L(t) will do. One such function is [ln(t). 'itionally, for p $ 0,

L =1 renders X,1 completely monotone. If p = 0, then L' must be completely

monotone.

Similarly, we let the compliance have the form:

J(1) = J.(1 + X2(t)), (2.5.10)

and seek to relate X2 to XI- We use equation (2.5.6) and the relation JoG, = 1 to

obtain a Volterra integral equation for X2:

X2 = X1 + XI * X2. ( 1

This is asymptotically satisfied with X2 " Xi. For, according to equation (2.4.10),

we then have P(XI * X2) = 2P(XI) = 2p, and the convolution is of higher order

than Xi. So,

J () '- Jo(l + x 1(t)), t -- 0, (2.5.12)

17
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and we see that G and J are approximately algebraic reciprocals for small 1.

For t - oo, we present some results obtained by Pipkin [2.2]. These were

gotten with the use of the Tauberian theorems for Lapla'e transforms 12.41 to relate

the time functions J and G to their transforms in the asymptotic limit. There

are two situations to consider which depend upon the time-dependent apparent

viscosity [2.5]:

(t)= J[G(r) - Ge] dr. (2.5.13)
0

This integral exists for all finite t for the moduli we consider.

We consider first, the cases in which qj(t) is not slowly-varying. Here we

restrict attention to moduli for which G - Ge is regularly-varying and write

G(t) = G (1 + x(t)), (2.5.14)

where now,

x(t) = L(t)t - ', 0 < p < 1. (2.5.15)

Cases in which p > 1 are excluded from this class since we are considering viscosities

which are not slowly-varying. Complete monotonicity of G requires that p be non-

negative. The result is again that J is approximately the algebraic reciprocal of G:

J(t) , Je(1 - X(t)), t -+ 00. (2.5.16)

Now, when q7(t) is slowly-varying, including all cases for which the integral in

(2.5.13) converges at infinity, the response functions have the forms

G(t) = G,(l + XI(t)), J(t) = Je(1 - x 2 (t)), (2.5.17)

where we do not require X, and X2 to be regularly-varying . The relation between Xi

and X2 is:

o X2(dr) d" XI(r) d = -, t-- 00. (2.5.18)

18



This does not imply that X2 - Xi. However, if Y1( oo) < oo, the relation (2.5.18)

becomes an equality in the limit 12.21. As a simple example of this case, let G

and J be given by (2.5.17) for all I > 0, and let X1(t) = exp{-t/T}. With the

use of (2.5.6), we find that X2 (t) = (1/2) exp{-t/2T}, which is clearly not asymp-

totic to X1. However, both integrate to T in the limit, and the limiting viscosity,

ti(oo) = TG , is finite.

2.6 The Constitutive Law: Some Properties

& the Quasi-Elastic Approximation.

In this section we examine the instantaneous and equilibrium elastic behaviour

predicted by our constitutive law for a nonlinearly viscoelastic solid. We associate

with this behaviour two wavespeeds which are relevant in this work. We then present

an approximation to the viscoelastic constitutive law which treats the material as

elastic with a time-varying modulus and compliance. For cases of a monotone input

function in the constitutive law and, separately, a non-negative input, we present

simple bounds on the output function.

Consider a perturbation strain history at a particular location x which vanishes

for t < 0, jumps to co at t = 0+, approaches e, as t -+ oo, and which is continuous,

but otherwise arbitrary for t > 0. From the constitutive law (2.1.5), the stress is:

a(x, t) = f(E,)G(t) + G(t - 7)f,(e(x, r)) dr. (2.6.1)
0+

For t < 0, the stress is zero. Immediately after the jump, it has the value:

a (x,0) = f(co)Go. (2.6.2)

On the other hand, in the limit t -- oo the equilibrium stress from (2.1.5) is:

a(x, 00) = f(Ee)Ge. (2.6.3)

19
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Equations (2.6.2) and (2.6.3) are the nonlinear elastic stress-strain relations which

describe the instantaneous and equilibrium behaviour of our viscoelastic constitutive

law. In a theory of wave propagation in nonlinearly elastic materials, the slope of

a stress-strain curve at a point ( e, u) gives the square of the speed of travel (the

wavespeed) for continuous disturbances having these values of stress and strain.

(The slope of a secant of the curve is the square of the speed for discontinuous solu-

tions (shocks), which have jumps corresponding to the values of the stress or strain

at the endpoints of the secant.) For our nonlinear theory of viscoelasticity, we will

make use of the instantaneous and equilibrium wavespeeds at zero strain [1.5], which

are defined, respectively, by:

U 2 = lim Gof '(c) = G, = Jo
rio

2 C O1(2 6.4)

Ue = lim Gef (E) = Ge = J(6

With the limiting elastic behaviour as motivation, we now present an ap-

proximation which reduces the viscoelastic problem to one of nonlinear elasticity

for all time, with time-varying modulus and compliance. We call it the quasi-elastic

approximation; it amounts to approximating the convolution by multiplication in

either version of the constitutive law:

UQ( t) = G( t)f(eQ( t)) c_ (G , f(eQ))( t),

and (2.6.5)

f(Q(t)) J( )aQ ( t) " (J * Q)( f),

where the x-dependence of the stress and strain is left implicit since it has nothing

to do with the approximation. We call any such function eQ or aQ which "solves" a

viscoelastic problem based on the use of this approximation a quasi-elastic solution.

The relations (2.6.5) become equalities if the material is purely elastic. With this

20
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approximation, we treat the material as if this were true at all tilies bl supposing

that G(, )JUt) = I at each value of t

In cases of a monotonically increasing input to either version of the constituti~,

law, (2.5.A) or (2.5.7), we can obtain simple bounds on the output function Coiisider

first (2.5.4) written without the x-dependence as

(G' * fle))l = (It- r)df (2c)), 12 (b)

If E is increasing nionotonically, then so is fJ . and therefore (if > 0 N,, (,

satisfies ( < (I - r) < G o for - cc < r < t, so we have the general bound,

G (e( t)) < (G' f (e))(t) < G f ((t)), - C < I < + _) (2 6 7)

Similarly, from (2.5.7):

Joa(t) < (J'*a)(t) < Jc(t), -0 < t < + o. (2.6.8)

If the input function vanishes for t < 0, then the lower bound on G(t - r) and the .

upper bound on J(t - r) can be made tighter, with the result for I > 0:

G( ()f (f()) < (G'*f(E))(t)< Gof (E(t)) (c ot < o)

(2.6.9)
J'o(t) < (J', ) < Jt)o(t) ( < 0).

We note that the inequalities for the bounds in equations (2.6.7) to (2.6.9) become

equalities when the material is purely elastic. Observe that for the tighter bounds

given by equation (2.6.9), the quasi-elastic approximation serves as a lower bound

on the output stress and as an upper bound on the output strain. We also note that

the quasi-elastic approximation for any monotonically increasing input always falls

21
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Sthin the ge iteral t)eUn(ds It is for surh iniputs a rigourous approximi ation in tl I at

I n, it i ,,n th err,,r I It wev er 1, ',,) a re gio,4n

Sh en i I in Itlpui fA it 'i i I k ilt i t n enlv to be 1e - i i- e' gat I ' I te' uppIt r n I,, i)

Iit 2 , 7) a nd th4. wer bo ound in (2 6 N) are still 'alid %ke ,,eri',e th. lItIter

( J ' e ) t) - / a(1 i)d l(.1
It

J ,ei t) -+ / oUt ). 1 {7 d
j. , a t) ' l I

IA I re, t e Ii a), . sec, eq t, atI eiI (2 2 -I 1( Integ rate ,,ut the ju 111p i1I J I T h, rvs u It

,)btaIMS Since' 7 is non -1-egalI',tl ' andt J 1+ Is , loSIt ,ve sin ce it i, e len ) ltely i'ulto [i .

TIe inequal Ity Is strit unless o ( vanishes identically for all r < t Similarly, the

upe'r bound in (2 6 7) results from G < o
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CHAPTER 3: STEADY WAVES

3.1 Governing Equations.

.

%e study steadya waves These art- disturbances of unc~hanginig shapte %%hicli

..

p)ropagate %with a constant speed. In one space diniension,

U (r, t) = ~ /)(3 1 1j

ml

describes a wave of shape ii which travels w ithi the constant way espeed U \ ith

a

U > (), the wave travels "to the right," in the positive x-direction for increasing

timeif t We call the quantity q defined by:

ai (Z' ) = t - / U (3.1 -2)

the retarded time.

If the displacement u(x,t) is given by (3.1.1), then the strain c and the veloc-

ty t. necessarily have the same form:

w here the prime denotes differentiation w ith respect to the argument. To show thal

ti

thsi as.re1o hesrs Goveenn Equation.) towrt

a (r, f) = 0f G'(t r)I df~ir~.r) (3.1.4)

eust, the fact that t - r (rd, ) t-7(z, r), followed by the change of vai-

a bles Y (.r, T r to obtain

f f((00 G (it) r) df ((7)) (3.1.5)
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T h,.refore the str..',- is als,, a fitittt n o ft tiy, rvt rde d tin e

I i tht rest f this i rk. the. displaeitii v.it strain and ',.l, it. a- i.l It I- th,

,ztr-s, % ill alw ays ),. func-ti.n of th. retarded timiie and for titatJ.'iial midi ,

II'. % ill b.. de,,n,ote 1,% u( ) t IL( T he deri% ativ es of these fit c toti| ,N ill It it.,. i

i,. % s At) l'n t 'So, I'll

N i i dl, reo a no niiitear o rdinar) it tegro -diflere nti Ieqiatiton t id a llt iiitiI

Il Itli'n " I, l h l i s r1crit,, the 1ro1)-gation of st eadN %aves of s tran iii nuilioi.ark

I- .,,, .i'l1, solids W 1h ih oc,,'ul-p all of one-d iiiensionial space for all tim N ;a

r,,t ".tAp. *.', use quantities like (3 1 I) it, I+ tenio imentuln and ,,m patiliiliv (.qu; a

ti,,is (2 I 3) and (2 I -I) to relate the stress to th, strain %N ilth the noal'mna)

i ,,ll i + Itl ls ,to%' I vWe obtain

a (I) = ' '( ). (:3 I G)I

HI e' all that our stress and strain are perturbations on a quiet state of the material.

In the distant past of physical time, and at places far ahead of the current position

of the disturbance, the strain and stress are zero In terms of the retarded time. this

ini poses the conditions

iim (t) 0 and lir a(t) = 0 (3 1 7)

I sing (3 1 7), we integrate (3 1.6) from -oo to t and obtain

WeV, now substitute for the stress in (3.1.8) from the constitutive law (2.5 4) The

rest It is

( 1) = u-2(G f( ))(1). (3.1.9)
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'v .-cr - , r.- -- rn wv WJ I . - W - -rrr .Vwtr. '._ wt - W'_ --. PO

If ilit . I.Al v u n e. q t t i,,li 11 I fr i r. r,' in t ,. , si t li . t %A 7 1

, I Itii

itu-it i i t I 1. i t I i are eq i l e.it I t jNi Iii " v r ii , 1i tt r,.1i .'

1, 11 1, 11i 'A It 1 ti (I - -, r it-, . It , l p a g A i,.l it , 1* , , o i , r a i i w A a . ,. i l it t . iii t , rl.. iiI

, it, r %\% , ,;ill 't failu, i, it f(I i . ,IlUtlI n f ,air 1t >.a ci if iI s It ,l.. 0' 4 11

tii :iI'i I; 1.ll, i . ti l i t , ,,i tli , i i ; I 71 If sl h u Itit s l ti *'lsi l Ii r,.

.• ., it i n s, I r i it vl ir t l r I *i i ., I i t :4 I t , I i t fr I

* It
d, t

I r I I ,. f11ai ' I its w, , q,1 sii)td r (§ Iand 12 ). th is i tit rt l i s 11e-d, ti)e d fr .ll

1li i t t t

3.2 Steady Wave Solutions in Linear Viscoelasticity.

le prepare to study the steady wave problem for nonlinearly %iscoelastic nia-

terials b first considering ihe linear problem in which the strain curve is f() = C

Et) "(J lt), 6( Oo) = , - c < I < + O (3 2 11

This ssterla ha, coitiious solutions

-(t) < t < -x (322"

Shire t.- is ni arbitrary time shift and for which the "rise lime" I/r satisfies

[' r l ) - i. :4 2- :4;

w hI e re,

rJ(r) J -ridJ(1) (3 2 4)
0
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I i -%k'~1 h-" Ii t th,, I.AI li.Si~J r.&ll'lilrn I J ~itt tall l rii~r~

ii I. -i: ~i.'4I h 1 ,tisf% -littiii 13 2 3) 1 ,in tlh. st~iard

I i r t it s Ili ii A1 .1 1

j i i r r I 'I Ilk J J1 I

-1 .1> I. 1. is *u, 12 t,, relate th vs e I li i ts to t-e Instant aneIts ar i

** it Ill 'A ; . el N A I ui I' ( I i enjIies tha r.1( r I IS ( c iplIeIt e ) In i(. Io :ie0

lii fi t .i f r h tus thet retlIa tion sIp 1 b et we en r E'( 0((tx a and I1' E (IU~ 1 ) I s

'I,. 11 tt. 1(. t I Iiitiiii it iIts ti (32I f t he f ornm ( 3 2 2 the r efIor e ex ist only%

%% '~ , r onisider discontinuous solutions to equation (3.2. 1) We call such a

slii tin a shiock if it possesses a fin ite juip discontinuity of the form (2.2.2) If the

stiti i-(olitinUous but its derivative has a jump discontinuity, then we call it an

arrelr rti ii ware. if such a d iscon tinulity a ppears in a higher order derivative, the

slit in- is a higher uirder acceleration wave It is well-known 13 11 that shocks can

f-lIII In 1(nitv timle ill elastic materials %% li, It obey a nonlinear stress-strain relatioin

lillikrr l ,r tit, eqjuations governing lineariy elastic mnedia can support travteling shock

-lu tl Ils liriviled the dusconitintuity is Ii thet initial data of the probleni these

di-tiirhani'-, traeld at the cuistani wavespeed U . w here a -- U is -. thet linevar

sIr'-s-straiii relationship We now show that equation (3 2 1) governing steadN

waves for tile theory of linear v iscoelasticity admits non -negative discontinuous

solutions atnon g the class of functions poshsesed of a Laplace transform if and only
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if the laterial is purely clastlc Slicli c .%, is in niediate, since the problem reduces

t, Ill . liti.Ar ela tic problem NecessitN Is ,lttaiiied In the foll- rig We seek a nion-

it. V.ttI%.. soliitI,on - W hich vallishes fo r t < II in th e c lass tof f nt it t ons ois iderei

traitsf,,r l uati,, (3 2 1) us ing (uiatin 3 t2 4) alonit g %% ith the" fac t that the.

tr.mnitfrl thev otolIittoi Is t prsI )oi t of the transforins o f the coivtol,ed

-s} x .I(s).--. (32 i)

her, s i, th oml, lex transform \arial,l, I-,r > 0 and not identically zero. Li(s) Is

An allal, tic fuinctioii of x ox It ich is real and positive for all real .s > r-,. for some ro > 0

Yherfere, e Jrs) 1'- s on tte segm lnt .s > r, Its unique analytic continuation to

thv. ti ole coiitl ex plane is sJ () = : -" ti1s inverts to give J(t) I HJf (). We

, ,cllue that non -negative steady shocks and acceleration waves which vanish on

the interval - , 0) and possess a Laplace transform exist in the linear theory of

isc oelasticity only for purely elastic materials.

3.3 General Characteristics of Nonlinear Steady Waves.

We now consider non-negative solutions to equation (3.1.9) governing non-

lin,'arly 6iscoelastic steady waves subject to tile initial condition (3.1.7) In this

• -' till we Assiltilte the existence of these s(luti(ns. As motivation for our investi-

valiin A, fir.t tak., a geonetrical approach to this systenm We then derive a set

,-f i,,,,-ar ,, nitittni s on a solutions' behaviour These conditions are presented

itit l itt ,,f goi,.rtl , haracteristics of nonlinearl viscoelastic steady waves We call

tIho-n ;r,,pertnf.4 [ii soiiie cases. they are, statements of nonexistence The protofs of

these, pr,,,rti-s follow their summary We then use these results along with some

results from the previous section to estimate the graphs of solutions.
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Consider equation (3.1.9) written in the form:

1' = G '* f(E). (3.3.1)

lFr,,i equation (2.6.7), we have that for monotonically increasing strains E, the

stress ( * f(6.) is bounded below by Gef(E) and above by Gof(c). On a graph

of stress vs. strain, this stress always lies between its equilibrium and instanta-

neous curves On such a graph, the left side of (3.3.1) is a line with slope U 2

passing through the origin; the wavespeed U is a parameter in the problem. Con-

sider Figure 3.1 and recall the definitions of the equilibrium and instantaneous

Savespeeds. U, and U_. giveii in equation (2.6.4). We will see that the value of U

in relation to U, and Ur determines the nature of the solution E. From the graph

in Figure 3.1 and equation (2.6.3), we expect that a solution has an equilibrium

value where the line intersects the lower curve. Similarly, with equation (2.6.2), a

solution should exhibit a non-zero instantaneous (discontinuous) response if the line

intersects the upper curve other than at the origin. These properties are among

those of our desired solutions. We prove that:

I. If E( t) is a steady wave solution such that E( t) - e, > 0 as t - oo, then the

equilibrium value, e, is the unique non-zero solution to

f(E) = U 2 j fce•  (3.3.2)

If U > U,. then -, is strictly increasing as a function of U.

2 There are no non-negative solutions possessed of a non-zero equilibrium value

if V < U,1, hence, the only non-negative monotone solution at these wavespeeds

is the trivial solution -( 1) _ 0. If U > Ue, then a non-trivial non-negative

monotone solution has a finite equlibrium value c, > 0.

3 For all values of U, if e(T) = 0 for some finite T, then e = 0 for all t < T.
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4. Any jump discontinuity satisfies the shock condition:

__ = U 2 JO, (3.3.3) r
Ae i

which, for our strain curves f, means that any steady shock travels at a wave-

speed U > Uo.

5. If U > U0 , then any non-trivial non-negative solution e cannot be globally

continuous. It must exhibit one and only one jump discontinuity. This

jump, at t = 0 (say), is from zero to co, the unique solution to

f(E.) = U 2Joo •  (3.3.4)

For all t < 0, E( t) is identically zero. As a function of U, co is strictly in-

creasing. Additionally, eo < E,, with equality if and only if the material is C

elastic. '

6. If e( t) is a non-trivial continuous solution which vanishes for, say, t < 0,

then U = Uo (i.e., U, is the wavespeed for acceleration waves). c

We first prove Property 1. It is convenient to use the equivalent formulation

of the problem given in (3.1.10) written as:

f W 0) = U 2  e(t - r) dJ(r). (3.3.5)

If e(1) - e > 0 as t - o , then we obtain (3.3.2) as the limiting form of (3.3.5),

since fo dJ(r) = J, according to (2.2.5). From the properties of f (§§2.3), non-

zero solutions to (3.3.2) are unique and increase strictly with U when U2je > 1, i.e.,

when U > U.

We remark that one could also pose our problem as a search for steady waves

having a given non-zero equilibrium value, since for a given a compliance J and a

particular ce > 0, the squared wavespeed U 2 is uniquely determined from (3.3.2).

29



GOF(eJ G.F(ei

0 6

Figure 3.1. The instantaneous and equilibrium stress-strain curves and the

hole U 26.

To prove Property 2, we observe that the unique equilibrium strain from equa-

tion (3.3.2) is zero when U < U, for our strain curves f. Thus, there are no non-

negative solutions w ith non-zero Ee at these wavespeeds. Since a solution E vanishes

as I- -k, it can be monotone and vanish as i - +00 if and only if it is identi-

call%, zero. Now, suppose that -( I) is a non -trivial lion -negative mnonotone soluition

to (3.3.5) for som1e value of U > U,. We use the upper bound on the convolution

given in (2.6.8) to write

f(E( 1)) < U 2 j'E( ). (3.3.6)
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Recall (§§2.3) that m (e) = f(6)/E is strictly increasing from m (0) = 1. As such, it

has a strictly increasing inverse m
- 1

, defined for m > 1, such that E = m- 1 (m).

with m-1(1) = 0. We use this in equation (3.3.6) to obtain

6(t) < m-1(U 2 Je) for all 1. (3.3.7)

If E( t) is a non-trivial non-negative monotone solution, equations (3.1.7) and (3.3.7)

imply the existence of a finite limit 6e > 0 for t -- oo. El

Property 3 follows by considering E(T) = 0 for some finite T. The integral

in (3.3.5) must vanish; with dJ > 0 and for E non-negative, we conclude that E(t)

must vanish for all t < T. E

We now prove Property 4. Suppose c has a countable number ofjump disconti-

nuities Ac i = 6(t ) - e(ti), for i= 1,2, ... where the ti are labeled in increasing

order, and the superscripts + and - denote limits to the point from above and

below, respectively. Using equation (2.5.3), we write (3.3.5) as:

f(£(t)) = f0 J(t - r) de(r). (3.3.8)

Consider the k-th jump; for i < tk, we have from (3.3.8):

f(E(t)) = U 2 Ej~t ti)Aei + U2 0J(t- r)E( i)dr, i < tk, (3.3.9)
i<k-c

for which we recall that J is zero when its argument is negative. Similarly,

f(E(t)) = U 2 Z J(t - ti)Ae i + U 2 f J (t - T)E '(T) dr, tk < I < t k+1 3.3.10)

i<k-

In the limit as I I t k in (3.3.9) we have that

f(I(1k = U2 Z (I - 10A6 5 + U
2  J J(tk - 7)E '(r) dr,(3.3.1 I

i<k 0

and as t t k in (3.3.10):
1+

f (6(1+)) = U 2 jotA6 + 2 E j (t+ _ ~Ae U 2 f-
= UJ(t+ - r) E ) dr,(3.3.12)

i<k -00
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where we have used J, - J(O+). We subtract (3.3.11) from (3.3.12), and use the

continuity of J for t > 0 to cancel the summations. The integrals also cancel, since

the integrands differ only at the single point tk. We are left with:

U2J - (3.3.13)
A~k

which is the desired shock condition for the k-th jump discontinuity. Geometrically,

Af/AE is the slope of the secant on the curve f(E) connecting the values of E

which comprise the jump. Now when both e+ and E- are positive, we have from

equation (2.3.7) that this secant's slope is larger than one, since m > 1. If one

of E+ or E- is zero (say -), then Af/Ae is the slope of the secant from the origin

to the point (+, f(E+)), and this slope is also greater than one for non-zero E

Therefore, U2J 0 is strictly larger than one. This is equivalent to U > U, which was

to be proven for any shock wave. C3

To prove Property 5, we first show that if E has non-zero values for U 2 J0 > 1,

then there is a "forbidden set" of values which it cannot have. We fix the current

time t and assume there is a non-negative function E which satisfies equation (3.3.5)

and whose current value E( t) is positive. We integrate out the jump in J and write:

f((t) 2j () = 2 f (t- )J

f () - UJE( ) = U] rJ +(r) dr. (3.3.14)
0

Since the integral in (3.3.14) is non-negative, we have

f(C( t)) - U 2 JoE( t) >_ 0. (3.3.15)

For U2Jo > I and for our functions f, relation (3.3.15) is satisfied as an equality

by a unique value E,, according to equation (2.3.3). As a function of U, c, is

increasing due to the the characterization of f given in (2.3.4). From (2.3.9), the

left side of (3.3.15) is positive for e > c,. Values of E E (0, e) are forbidden since
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they render the left side of (3.3.15) negative, in view of (2.3.8). Therefore, at any

time t, either E(t) = 0 or E( t) >_ E, in (3.3.14), when U 2 Jo > 1. We conclude

that the solution is not globally continuous (unless it is identically zero); it must

jump from zero in order that it have non-zero values. By Property 4, this jump

must be to the value E,. If (t) = E, in equation (3.3.14) when t = 0 + , then the

integral must vanish at 0+. For non-negative solutions e, we must have E(r) = 0

for all - < 0. Furthermore, this jump discontinuity is the only one possible, since

equation (2.3.7) implies that a jump originating from and ending at valh es of E not

in the forbidden set must travel at a wavespeed greater than the value of U which

produced the jump to Eo. Such another value for the wavespeed would contradict

Property 4; any other such jump cannot belong to the same steady wave. Finally, it

is a trivial consequence of Property I and the characterization of f given in (2.3.4)

that eo < ce If the material is elastic, then J, = Je renders e, and e, identical and

this is not possible if the material is not elastic. C

To prove Property 6, we use the assumed properties of E to choose a sequence

of times {tk}ok0 = with tk 1 0 such that, for each k:

E(tk) maxe(r). (3.3.16)
r <_tk

From equation (3.1.10), we have:

f(e(tk)) U 2 (j ' * C)(tk). (3.3.17)

Since E vanishes for I < 0, equations (2.6.9) and (2.3.4) imply that

<() ! U2j (tk), (3.3.18)

with equality only if the material is purely elastic. In the limit as t k I 0 (and

therefore as E 1 0), we have

1 = m (0) ! U 2 J' = (U/U.) 2 , (3.3.19)
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with the use of equation (3.2.5). Since e is assumed continuous, Property 5 implies

that U is not greater than U,; hence, U = U,.

We now use the above properties to estimate the graphs of candidate steady

wave solutions. For U > U, a candidate solution is a shock which has a single

jump at t = 0 and continuously approaches the appropriate equilibrium value.

At U = U,, we consider a limiting case of shock solutions as the parametric

wavespeed is decreased to U, to obtain a candidate acceleration wave (or a higher

order acceleration wave) which vanishes for t < 0. For U, < U < U, a candidate

solution is continuous and increases from zero at negative infinity to 6, as i-~ 00.

Since - must be vanishingly small as t -* -oo, we expect it to be asymptotic to

a solution of the linearized equation obtained by setting fle) -=E. From the pre-

vious section, we know that there arc exponential solutions for these values of U.

Thus, our candidate solution for the nonlinear problem is asymptotically exponen-

tial for t - -oc. The graphs of these functions for all values of U are shown in

figure 3.2.
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3.4 The Quasi-Elastic Solution.

In sec tio n 2 G we 1)resented the quasi-elas tic a1p)roxliniat io n to tle cOnStitUtiVe

law W, e use it herein to obtain the quasi-elastic solution EQ for nonlinearly visco-

elastic steady strain waves. After we examine its characteristics, we discuss its

usefulness as an aplproximation to stead' wave solutions.

In terms of the compliance, EQ satisfies the following algebraic equation at

each t

f(Q( 1)) = u 1 J(t)Q( 1). (3.4.1)

\We prove these properties of EQ:

I. For U 2 J(1) > I, there is a unique non-zero quasi-elastic solution EQ-

If UJj(t) < 1, then EQ( t) = 0.

2. The quasi-elastic solution has the correct equilibrium value and, for U > U0,

the correct instantaneous value.

3. EQ is piecewise continuously differentiable and, where it is non-zero, it is

strictly increasing.

4. The quasi-elastic solution is an upper bound on monotone solutions to equa-

tion (3.1.10) for nonlinearly viscoelastic steady waves which vanish for

t < 0 (say).

5. If EQ 2 and EQ are the quasi-elastic solutions corresponding to wavespeeds U

and U1 for which U2 > U 1 , then EQ 2 () EQ 1'(t) with equality only at those

times where EQ 2 (t) = EQI(t) = 0.

The existence and uniqueness of EQ (Property 1) follow from the properties

of our strain curves f. Q
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lor Property 2, the limiting cases of (3A.. 1) produce the results in equa-

t<ions (3.3.2) and (3.3.4) for viscoelastic steady waves. E

To prove Property 3, we recall from section 2.3 that m (e ) = f (E)E is piece%% i'e

continuously differentiable. Its inverse, in (m). defined for m > I is also piecewi i-

continuously differentiable. Thus, from equation (3.4.1) we may express EQ direct)%

as:

EQ(t) 1- (U 2 j(t)) for U 2 J(t) > I. (3.4 2)

The differentiability and monotonicity properties of 7 - 1 and J imply these prop-

erties of EQ.

To prove Property 4, we recall from equation (2.6.9) that the quasi-elastic

approximation is an upper bound on the constitutive law for monotone input func- p

tions which vanish for t < 0. Thus, from equation (3.1.10), we have for a monotone

viscoelastic solution 6 which vanishes for t < 0:

f(e(t)) < U 2 J(t)E(it). (3.4.3)

However, equation (3.4.1) implies that U 2 j( 1) = m(EQ(t)), in the notation of

section 2.3, and thus,

f(C( t)) < m(eQ( t))E( t). (3.4.4)

Using equations (2.3.8) and (2.3.9), we conclude that e < cQ. CD

The proof of Property 5 follows from equation (3.4.2) and the monotonicity

of m - . -

We note that the graphs of eQ, determined by mrnI and J,look much like those

of our candidate steady wave solutions shown in figure 3.2. If U > Uo, then rQ

is a shock which has a jump at t = 0, from zero to m- 1 (U 2 jd), from which it

increases monotonically to Ce. If U = U,, then cQ is a continuous acceleration

37
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wave (of possibly higher order) which departs from zero at t = 0 and increases

monotonically to its equilibrium value. For the cases Ue < U < Uo, EQ is a shifted

version of the above acceleration wave; it is zero until some time t. > 0 whirh

satisfies U, 2 j(to) = 1. It is obvious that for this latter range of U, such a quasi-

elastic solution cannot be a global bound for the viscoelastic solution which never

vanishes on an interval.

The quasi-elastic solution is attractive for a number of reasons. As it is the

solution to an algebraic relation, it is easily computed. For special forms of the

strain curve f, eQ can be expressed exactly in terms of parameters of f aud the

compliance J. If f and J are given as interpolators of data, -Q(t) can be deterinimed

at any particular time t from a numerical nonlinear equation solver.

The quasi-elastic solution provides an upper bound on the stress in a material

experiencing monotone steady wave motion; for, the stress is proportional to the

strain by equation (3.1.8), and EQ is an upper bound on the strain (Property 4).

In the next chapter, we show how a sequence of increasingly tighter upper bounds

on the solution e can be obtained from eQ. Moreover, for some shock solutions

(U > U.), the quasi-elastic solution can be a rather good approximation in itself.

We have shown in this section (Property 2), that eQ has the correct limiting values

at i = 0 and for i -- o0. In Chapter 5, we show further that, for shock solutions, EQ

is asymptotically correct, as t 1 0.
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CHAPTER 4: EXISTENCE & UNIQUENESS THEOREMS

4.1 Prelude.

In this chapter, we prove the existence of the kinds of steady wave solutions

we chose as candidates in Chapter 3 and we examine the uniqueness of such soll-

tioris among certain classes of functions. The proofs we present for the Px istelne

theorems are constructive. We can, therefore, use the method of proof to obtain

a numerical approximation to the solution. We build solutions from monotonically

convergent sequences of functions which result from an iteration scheme. Although

monotone convergence is generally slow, it has the nice property that each member

of a convergent non-increasing (non-decreasing) sequence of functions is an upper

bound (lower bound) on the limit function. We make these notions of monotone

convergence precise in the next section. In the following sections, we present the

iteration scheme and its properties, and we prove the main theorems on existence

and uniqueness of steady wave solutions.

4.2 Monotone Convergence & Bounding Sequences.

We denote by {f} ,j' a sequence of real-valued functions defined on some

subset of the real line. Consider such a sequence with members which satisfy:

fI(t) 5 ff 2 (t) _! ... _5 f 1(t) < fu(t), (4.2.1)

at each t, for some finite real-valued function fu (subscript U for "upper bound"),

which is also defined where the f,, are defined. At a fixed value of t, the se-

quence (fr(1)}'= is a non-decreasing sequence of numbers bounded above by the71=l

a, 39
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4.3 The Iteration Scheme.

A standard technique for the solution of integral equations 14 11 is iteration.

The equation to be solved is arranged as an input-output system into whirh an

initial guess for the solution is fed. The resulting output function is then used

as a new input to the system and this process is repeated, generating a sequence

of functions. If this sequence converges to a function which satisfies the original

equation and any associated side conditions, the limit function is then a solution

of the problem. We apply this technique to construct a solution for the system of

equations (3.1.10) and (3.1.7) governing the propagation of nonlinearly viscoelastic

steady waves. We recall from section 2.3, that the strain curve f has an inverse F

We use this to write (.1.10) as

II

,10

E( 1) = F( 2 (j (4.3 1

lFront this we define the input-output system for use in iteration:

E.. t) = F ( U 2 (j* Ein)()) (4.3.2)
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Lenlnia 4.3.2. f I ) > zilV) fir all < t. with 6. not identically equal to Ei on
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tini , 1 iiisttiv aiount to the integral. 1

Now for the inpiut-out put systen. we hiave tihe following lelm mas.

Lemma 4.3.3. (a) If in eq uatoi on (.1.3.2) Fill is monotone, then rout i monotone.

(b) If ti is continuous except for a finite jump discontinuity at I = 0, then E0ou has

a finite jump discontinuity at tI = 0 and is otherwise continuous-
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V'roof. (a) The monotonicity of Eo t follows directlv from the lnonotonicity of both F

and .1 F • Statement (b) follows froin the continuity of F, th e continuity of J

for I > 0, and equation (2-2.4) for the Stieltjes i ntegral.

Lemma 4.3.4. If e' and e 6 are not identical and 0 < a (7) < x (r) for all
in in in il

I. then Ea b )
_ o, tl)  < E0t(t)

Iroof: From the hypotheses and Lenitna 4.3.2, we haxe

Since F is strictly increasing,

U,2J )(t) < F(U(J *-n(t)), .3.)

and the result follows from (4.3.2) and (4.3.6).

\Vith the next pair of lemmas, we examine the output function obtained when

the input is related to the quasi-elastic solutior, presented in section 3.4. The first

provides sufficient conditions under which the output function is strictly less than

the input function.

Lemma 4.3.5. If Ein is monotone, vanishes identically for t < 0, and satisfies

Ein(() _ EQ(T) for all r < t, then £out(t) < Ein(t), for t > 0, when the material is

not purely elastic.

Proof: 13y equation (2.3.9), we have for Cin _ EQ:

f (Ein ) > m(sQ ) in. (4.3.7)

We recall from (3.4.1), that rn(EQ( )) = U 2 j(t), so we have,

f'(-i"(t0) >_ U"J(t),Fin(t)

> U *2 (j , ) (I), (4.3.8)
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where the strict inequality is obtained from the bound in (2.6.9) for materials which

are not purely elastic. Using F, the strictly increasing inverse off, and the definition
S.-

of E.out, we obtain:

* i)( t) > F U= t( t), (4.3.9)

which is the stated result.

The next lemma gives sufficient conditions for the quasi-elastic solution to be %

a strict upper bound on the output function.

Lemma 4.3.6. If rin vanishes for t < 0, is monotone, and satisfies Ein(r) :< EQ(7 )

for all r < t, then <out( ) < EQ( ), for t > 0, when the material is not purely elastic-

Proof: By Lemma 4.3.2 and the bound in (2.6.9), we have the following inequalities:

(gP Ein)(t0 < PJ' 6o)(t) < J( t)eQ(t). (4.3.10) '

So,

c.t( t) = F( *Ei)(t)) < F U2J(t)CQ(t) = 0(t) (4.3.11)

by the inonotonicitv of F and the definition of EQ in equation (3.4.1). 0

Analogous to the results of the two previous lemmas, we can provide suffi-

cient conditions for which the output function is strictly greater than the input

function and, separately, conditions for which we have a strict lower bound on the

output. Ve consider input functions which are related to EL (subscript L for "lower

bound"), which we define as:

CL(1) = c11(), (4.3.12)

d'

where E, is the uninue value to which the solution jumps at t = 0 (if it does ,.

so), given in equation (3.3.4), ard 11(t) is the leaviside step function. The next

lemma validates EL as a lower bound.
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Lenin i a 4.3.7. If En vanishes for t < 0, is monotone, and satisfies in (r) EL (7)

for al T < t, then -out( 1) > EL( t), for t > 0, when the material is not purelY elastic.

Proof: From Lemm a 4.3.2 we have

(J ' Ei,)(t) > (J' L)( ), (4.3.13)

with equality if and only if ein and EL are identical. Then, since convclution with

the H1eaviside step function is just an integration:

(J '* &iu)( t) > J( t)E o

> J0,E (t1) (4.3.1.)

for materials which are not purely elastic. Thus,

Et(t)= ) F (U2(j *Ein ) ()) > F (U2JoEo ( t) EL ( t), (4.3.15)

from the definitions of Eout, E,, and EL, and the monotonicity of F.

Lastly, for the output to be greater than the input, we have

Lern ma 4.3.8. If Ein vanishes for t < 0, is monotone, and not identically zero

for t > 0, and satisfies Ei(r) !5 CL(r) for all r < t, then ,out(t) > Eji(t), where Ej.

is non-zero, when the material is not purely elastic.

'roof: We use the mnonotonicity of f and equation (2.3.8) to write:

f(Ein ) -- f( ) = n(co)ein, r < 1, (.1.3.16)

with equality if and only if in is identical to EL. Now, m(,-,) = U2J,. and by

equation (2.6.9) we have Jo£ol1(t) < (J'* Eji)(1), when the material is not purely

elastic. Therefore,

f(Ei 0 (t)) < U 2 (J ' Ei)(t). (4.3.17)
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Using the monotonicity of F and the definition of ELout we obtain:

•i(t) < F(U,2,(j Ei)(') = outl(t), (4.3.18)

which is the stated result.

4.4 U > U,.

We construct sequences of functions using the interation scheme (4.3.3) for

wavespeeds U > U,. We define an upper bound sequence to be a monotone sequence

of functions, each member of which is an upper bound on all succeeding members.

Similarly, a lower bound sequence is one for which each member is a lower bound

on all succeeding terms.

We first construct an upper bound sequence. We fix a value oft > 0 and choose

an input function E1 which satisfies the conditions of Lemma 4.3.5 and is continuous

for t > 0. The first iterate E2 satisfies c2( t) < l( t) from this lem ma. Further-

more, this result applies for all earlier times greater than zero; we have F2(r) < l(7)

for 0 < r < t. We recall that eQ(t) > ELt) = oII(t) for t > 0, with equal-

ity only at t = 0. Therefore, our starting function el satisfies the conditions of

Lemma 4.3.7, with the result that EL(T) < E2(r) for 0 < r < t. Moreover, by

Lemma 4.3.3, 62 is monotone and continuous for t > 0, since el is. By continu-

ing the iteration process, Lemma 4.3.4 guarantees that the succeeding outputs are

less than their associated inputs. We thus have a monotone sequence of monotone

functions which are continuous for t > 0 and bounded below by EL:

Ej(T) L £n+l(r) ( n(T) _ ... < £60(T) _ £I(T), 0 < r < t, (4.4.1)

with equality only at r = 0 and only if E1(0) = £o (i.e., when the starting function

takes the value of the solution at t -- 0). We similarly construct a lower bound
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sequence by starting with an input function which is continuous for t > 0 and

which satisfies the conditions of Lemma 4.3.8, producing an output F2 which is

larger than El and, by Lemma 4.3.6, which is bounded above by EQ. The result

is a monotone sequence of monotone functions which are continuous for t > 0 and

bounded above by EQ:

E1 (T) < To( ) < ... < & (r) - E.+5 (r) < EQ(r) 0 < r < t, (4.4.2)

with equality only at = 0 and only if E1(0) = E

From the discussion of section 4.2, we have that such upper or lower bound

sequences converge to limit functions which may, in general, depend upon the start-

ing functions. The following theorem guarantees that all such sequences generated

from our iteration scheme necessarily converge to the same function for U > U,.

Theorem 4.4.1. Existence and Uniqueness for U > U,. If EI(t) is con-

tinuous for t > 0 and satisfies the conditions on ein in either Lemma 4.3.5 or

Leminma -1.3.8, then the upper bound or lower bound sequence of functions produced

by the iteration scheme (4.3.3) converges to a monotone function which is the unique

soloution to (4.3.1) among the class of functions which are continuous except for a

linite junip discontinuity at t = 0. Furthermore, these sequences converge uniform ly

on tile interval [0, t[ for any finite t > 0.

Proof: We first remark that there exist suitable starting functions, Ej, examples of

which are 45, and EQ for lower and upper bound sequences, respectively. We prove

that an upper bound sequence converges to a solution. The same arguments apply

for lower bound sequences. We denote by E* a function to which any upper bound
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sequence (4.4.1) converges. From (4.3.3) we have:

E* rn) = e lim E+I(t) = ,lim F U 2(J '* e)(t)

SF(u 2 lira (J' )

since F is continuous. Then by dominated convergence 14.21,

*(t) = (U 2 (J )( ,

since the integrands are dominated by the first one in the sequence, and this first one

was chosen to be integrable. (For lower bound sequences, Lemmina 4.3.6 provides the

bound.) Thus E* is a solution. This limit function is monotone since it is the limit

of a convergent sequence of monotone functions [4.21. Now, a monotone function

can be discontinuous only if it has finite jump discontinuities 14.21. Since e* is

a solution, it vanishes for t < 0 and can have only the single jump discontinuity

which occurs at t = 0 (Property 5, §§3.3). Therefore, the monotonicity of 6* implies

its continuity for I > 0.

We now prove that the solution to (4.3.1) is unique among functions which

are continuous except for a finite jump discontinuity at I = 0. We will show that

an assumption of two different solutions leads to a contradiction. We begin by

considering the difference kI - E2 1( t) of any two solutions, identical or not, at a

time t which is larger than the greatest time, say 1,, before which the solutions

agree (all solutions at these wavespeeds agree until at least t = 0+):

i - s2 [(t) =F (U2(J * I) ()) - F(U2(J' " 2)(0)

Using equation (2.3.16) to bound the right side, we obtain:

VE1 -e 2 1(t) < Af(U2(J'*eI)())U2j(J*(ei- e2))] )_i; /E {1,2},I

with equality if and only if the convolutions are equal at 1. Such an equality requires

either that el (r) is identical to 6 2 (r) for 7 < 1, or that the difference (E) - 62)(r) is
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not of one sign, where it is non-zero, for T < t, in view of Lemma 4.3.2. \V ith the

use of a triangle inequality, we pass the absolute value inside tile integral to get:

- (U2(J -) 2 ( I - E2I) (1),

with equality, now, if and only if el(t) is identical to E 2 (r) for r < t.

We now assume that el differs from E2 somewhere on [tot]. The continuity

of el and E2 ensures that the difference IEl - 621 achieves its maximum somewhere

on [t, ]. By hypothesis, E (to) = £2{t); hence, 11- £21 is not equal to its maximum

on the entire interval, and we have the strict inequality:

- *)() < A 2 * j) ) U 2 J(t - to) max JEJ - £21(r). (4.4.3)
TE It,t I

In obtaining (4.4.3), we have also used the monotonicity of J and the fact that cj-E'2

vanishes for t < t,. Now, co is a solution by hypothesis. We have from equa-

tions (3.1.10) and (2.3.13):

M (U 2 j = Al (f(e < 1 (4.4.4)in( 60 ) U 2J o

The inequality in (4.4.4) is obtained for increasing in since E#(t) > E, for t > 0

and ti (Eo) = U 2 Jo Thus,

AI(U2(jI,£ 6 )(t))U 2 j o < I for all t> 0.

Since J(1) is continuous for I > 0, there is a time ti > t, such that

A! (U2(J ' * Et)(1i))U2J(t - f) < 1. (4.4.5)

Using this in equation (4.4.3), we have

I£1 - E21(1) < max 1, - £2(r). (4.4.6)
rC [to,t 1 ]
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Hence, the maximum occurs at a time t' < t 1 . Equation (4.4.5) is also satisfied

at t1 and we have:

IE - I W( ) < IE - E2

This contradiction follows directly from the earlier assumption that El -4 £2 some.

where on Ito,t). We conclude that the solution is unique in the class of functions

considered.

Lastly, the uniform convergence on an interval 10, tJ of the sequence of iteration

functions follows from the continuity of E* and each member of {En}' p according

to the following version [4.21 of

Dini's Theorem. Let g, fl, f2, ... be continuous functions on [a,b]

such that fl - f2 - ... and fn(t) - g(t) as n - oo for all it E a,b].

Then f, " g uniformly.

We note that Dini's theorem also applies for lower bound sequences {fUn} by

considering the upper bound sequence whose members are g, = g - f, converg-

ing to zero in the statement of the theorem above. This concludes the proof of

Theorem 4.A... E-

4.5 Ue < U < Uo.

Recall in Section 3.3, we chose as a candidate solution for these values of

wavespeed a function which, for I - , is asymptotic to an exponential solution

of the linear probhlem in which f(E) E. W ith this in mind and, since solutions for

these values of U have no finite jump disconti uities (§§3.3i), we consider continuou

solutions of the form

1(t) = .t)e , (4 5 1
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where w is continuous and satisfies

lim w( t) = I, (4.5.2)
t -- 00

and r is the unique solution to (3.2.3). For simplicity, and without loss of general-

ity, we have set the time shift t, in equation (3.2.2) equal to zero. We again prove

that upper and lower bound sequences from the iteration scheme (4.3.3) converge to

a solution of (4.3.1). We will also prove that the solution is unique among functions

which have the form of (4.5.1) for these wavespeeds.

We begin with the proofs of some preparatory lemmas, the first of which shows

that crt (which solves the linear problem) does not solve the nonlinear problem.

Rather, it starts a decreasing (upper bound) sequence when E, = e't in the iteration

scheme. A dd ition ally, it is an upper bound for increasing sequences when C, < e'

Lemma 4.5.1. If sjn( ) < err for all r < t, where r satisfies (3.2.3), theL

e0oUtt < rt

Proof: From Lemma 4.3.2 we have

SI rt
*0in < *e

with equality if and only if Ein, is identical to er . Now,

2' 1 rt U r r t rt
UL.I * e U r (r)e e

since 4 'r.1 (r) rI. Therefore,

w hor,, I ave usd f'(f ) < f to ohblain the last in eq tuality El

' obtain a lower bound for upper bound sequences (ald at the same time

a fu icti(on which starts a lower bound sequence), we us, the lower bound on the
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function F given in equation (2.3.19) and repeated here for convenience:

F(f) > f - kf ", k > 0, -f > 1. (4.5.3)

By using this bound when in ert in (4.3.2), w f that

e 'ot(t) > e - kU 2 "rJ("tr)e ft.

We note that

U 2 'rJ(-yr) < 1 for - > 1, (4.5.4)

when U rJ(r) = 1 because rJ(r) is completely monotone (cf. equation (2.5.5)

and §§3.2). To obtain a lower bound for more general inputs, we consider input

functions at least as large as 6b which we define as:

Cb( t) = ert- Ce l rt, -I > 1, (4.5.5)

for some positive constant C. If we choose C to be the positive constant given by

kC = - (4.5.6)1 - U 2 yrJ(-yr)

then Eb is the desired lower bound, at least on some interval (-oo,t), according to

Lemma 4.5.2. If 6i,(r) _ Eb(r) for all r < t, where r satisfies (3.2.3) and C is

given in (4.5.6), then there exists a finite t b such that cout( ) > Cb( ) for all t < tb.

Proof:

EOUt() F ( U ( Eb)(0)

Ser - CU 2 -yr(-yr)e -rt)

re CU j.r t k-1rt I-(U J) I )rt I

where we have used (4.5.3) to bound F and have factored e rrt out of the bracketed

quantity. This remaining bracketed quantity raised to any lower Y > I is a %%ell-

defined positive number smaller than unity for I < tb,  here

ln(CU 2 -rJ (-r)
1b = - (4 5 7)
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Therefore,

Eout( t) > ert - (CU2yrJ('r) + k)e~r, t < t b;

= b( ), t < t b;

by the definition of C. The time t b is finite for the constants considered.

We still do not have a lower bound for all 1, but we can use Eb to construct

one. Observe that Lb has a single maximum. We define EL to be the continuous

function equal to Lb until its maximum and equal to this maximum thereafter:

EL( = E( 01) t < tf4E b(ti t "I t t ... "

where

In (-TC) f~

We note that ti < tb, since equation (4.5.A) and -y > I imply that the argument of

the logarithm in (4.5.9) is larger than that in (4.5.7). We now assert that EL is the

desired lower bound for upper bound sequences and that it starts a low er bound

sequence upon iteration.

Lemma 4.5.3. If Lin(T) > -L(7 ) for all r < t and EL defined in (4.5.8), then

Eout(t) > LL(t).

Proof: If 6i - EL, then Lot(t) > L(I) for all t < 1, by Lem ma 4.5.2. Fur-

therm ore, Lout is monotone and continuous according to Lemma 4.3.3, since EL i

both monotone and continuous by construction. Therefore, Eout(t) > CL() for all

t > I,,, If Ei, is not identical to EL, the result is immediate from what we have just

proven and Lemma 4.3.4

The foregoing lenim as of this section provide starting fu nctions and bounds

for iteration, all of which have the desired properties (4.5.1) and (4.5.2). We no\

have all we need to prove the main theorem for these wavespeeds.
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Theoremn 4.5.1. Existence and Uniqueness for U, < U < U,. If, for all real t.

61 (1t) =e ' where r satisfies (3.2.3), or if rE ( t) = CL( (1 given in (4.5.8), then the

iteration scheme (4.3.3) produces an upper bound or a lower bound sequence, re-

spec tively, which converges to a continuous monotone function on (0, +oo). In

either case, the limit function is the unique solution to (4.3.1) among the class of

continuous functions which are asymptotic to ere for I -f -oo. Moreover, these

sequences converge uniformly on the interval (-oo, 1] for any finite t.

rtt

Proof: If er (E = -L) the use of Lemma 4.5.1 (Lemma 4.5.3) followed by

rep~eated application of Lemma 4.3.4 shows that the iteration scheme produces a

dlecreasing (increasing) sequence of functions bounded below by EL (above by e '

according to Lemma 4.5.3 (Lemma 4.5.1). Each member of the sequence is mono-

tone and continuous according to Lemma 4.3.3, since el is monotone and continu-

ous. Thus, the sequence converges to a monotone function E* on (-00, +oo). This

limiit fu nction is a solution to (4.3.1) by dominated convergence, as in the proof

of Theorem 4.4.1. Since a solution at these wavespeeds cannot have any finite

jum p discontinuities and since a monotone function can be discontinuous only if

it has such discontinuities, we conclude that E* is continuous. Furthermore, CeisI

rt
asymiiptotic to e as t - -00, since

rt -tri r,
e -ECe < EUiq) < e I < tU,

where (C is given in i (.1.5.6) and t b in (4.5,7). Therefore,

6*()

t -n -00 1.

Tlo prove that e is the unique continuous function having this asymptotic

iroperY wve write E in the form given in (4.5.1) and (4.5.2) to obtain a bound on
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any such convolution U 2 J E* :

U 2(j' U 2" °f 006(I
UjJ'* C)(t) = U-r

= erU] w(t- 7)e dJ(r)

< e r max jw*(r)U 2 f -rr dJ(7)
T t 0 r

= e max I *(7)1, (4.5.10)
r<t

0~ p

since the last integral is rJ(r) and Ur (r) = I by the choice of r. Now we 

assume that there are two different solutions EI and . and obtain a contradiction.

We consider the difference I~l - E21( t) as in the proof of Theorem .t.4.1 using the

bound in (.1.5.10) we obtain:

E,1  - E.I(t) < e M U2( ( '* )(1))max l - " 1(T1, E (1, 2),

with strict inequality since wt and we2 agree at - o. When we divide by er t and

use the fact that Al decreases from Al (0) = 1, we find that w1 - u,2 must satisfy

I'U - W2 1(t) < max Iw, - w'l(r) for all t.
r<t .

From arguments identical to those following equation (4.4.6) in the proof of Theo-

ren A.A.1, we find that the assumption of two different continuous solutions leads

directly to a contradiction.

To prove that the sequence {E, __ converges uniformly to on any in-

t,0r\v:i c- , %% we note that IF,, - '*(r) < err since E,,(T) and E*(-) are both 

b,,i nd,',l alo,,,, hy r
r  an(d below bv zero. For an\ ' > 0 and for all it > I \' v

11A ' 0*I(
r
) < (S 1 1ien evCr 7 < . w I vre 1, (I, n r T huis. the convergence

is uniformi oI x If I > t1, the uniform convergen e oI [1t,I ] afforded bN

I)mi's Theor'm ( 4()t . e) extends the ressult to ( ",t F-]

%.SSA
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4.6 U = Uo.

For this particular value of wavespeed, our candidate solutions are continuous

and vanish for I < 0. As before, our plan is to construct upper and lower bound

sequien ce's of such functions and to prove that they converge to a solution of equa-

tiotn (4.3.1). \Ve will prove that this problem has a unique solution among the class

4)f continuous functions which vanish for I < t.

\Ve begin by deriving an equivalent form of (4.3.1) useful at this value of

wavespeed. We add and subtract Jof1 (I - T) inside the convolution integral in equa-

tion (3.1.10) and evaluate the added term to obtain:

f(E) = UeJ&E + 12(J - J 0 )' . (-1.6.1

Using U-J,9  = I % we write this in terms of the reduced strain curve f(E) -E:
dI

f - e = , (4.6 2)

w h ( re

J(t)- J
x 0t - ) J H ( t) (.t.6.3)

Jo

is the norm alized corn pliance which vanishes for t < 0; X is identically zero if and

(filly if the material is purely elastic. We note that the reduced strain curve is

monotolne and. therefore, has an inverse, since f( c) - = (m(c) - l)E, eachi factor

o)f which is strictly increasing in E. We assume, as in equation (2.3.18), that there

ii,' o,,stait, - > ( alnd -, > I such that

0k
" ,  ( (.1 6 4)

Iin t--ro. )f thf .scaled strain u( 1) defined by

ILI

u( M) = k)- ( , (4.6.5)
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We Consider the problem equ ivalent to (.4 .3.1) given by

u G ) X 11 u) (t)) (.4.6.6)

where G is not the miod ulus; rather, we now denote by G h tity nrai

inverse of the reduced strain curve after scaling:

in whoi L is an otherwise unspecified slowly-varying function. Solutions 11( t)

to (.1.6.6) w ith (.6.4I) and (4.6.5) are solutions to (4.3-1). The corresponding iter-

at ion schem e is:

"'1+ 1 (t) = ((X' *U1)(1)) v I 1,2, (4.6.S

Thle quasi-elastic solution UQ =k - e satisfies

u Q (t) = G (X( It) uQ( 1)) (4.6.9)

We continue with our now famniliar attack on the problem. The iteration

schemne (4.6.8) isamnenable to a set of statements analogous to Lemmas 4.3.3, 4.3.4.

and .1.3.6 which allows us to assert, without a redundant proof, that UQ starts

a decreasing sequence of functions upon iteration and that it may be used as an

uipper hound for an increasing sequence.

Lem n ia 4.0.1. If u1 is monotone and continuous, vanishes for I K 0, an(] sati--

tieSU I 1 ( T) 5 uQ(r) for all r < 1, then uni 1) is a conltliuous monotone function of t

;ind, whon tht, in aterial is niot purelv elastic, u,, satistie.s ?I.,( t ) < ?IQ( 1). for I > 07

We need only exhibit a function uL which is a lower bound for a Sequence-

started by uQ and which starts an increasing sequence hounded above by 1IQ . To
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do so, we use a lower bound on the normalized comnpliance X. Since x (0) = 0 and

its derivative is completely monotone (§§2.5), X is convex down. For small enough

times, it is bounded below by a line of slope a:

X( t) > at for 0 < t1< t", (4.6.10)

wv here

X (ta) I0 < a= <X' (0+ C) - (4.6.11)
ta

We also use a lower bound on the function G given in (4.6.7). Since L(g) -I

as g 1 0, there are positive constants 6 and g6 such that

G(g) > g''Y(1 - 6) for all g < g6. (4.6.12)

Fu rtherm ore, we can always take 6 < 1 since G increases from G(0) =0. Using these

bounds on X and G, we will show that a lower bound for decreasing sequences (and

a starting function for an increasing sequence) is given by

?.LL) 0 r 7I< ,r (4.6.13)

for smnall enough values of the positive constants r and t,.

Lemmia 4.0.2. There are positive constants r and t7. such that, if ul is a continuous

monotone function which vanishes for I < 0 and which satisfies u (-r) ! uL (r) for all

7 < t, withfL ilefinod in equation (4.6.13), then u2( 1) is a continuous monotoneP

function of I when the material is not purely, elastic, and 112 0) > L ( 0) for ali t > 0.

lu rthertnorv, LQ( () > 110 1) for all I > 0.

P'ro(f: Fix h, C- (0, 1) and let
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We choose a value of r < r 1 and define

i.

ur( ) = rtm -  (4.6.14)

Using the bound on X given in (4.6.10), we have

*Ur)(t) > ar t'-', 0 < t < t'.

From the lower bound on G in (4.6.12), there is a time I, > 0 such that

* r.)(t) > (ar -- " 7 -  (1 - ) 0 < t < min{ti.ta} /

> Ur(t),

since r < r1 .

Starting anew, we fix 6Q E (0, 1) and define

rQ = a - b)-

Now let Ur be as in (4.6.14) with some value of r < rQ. Recall that uQ G(\ "a),

Using the lower bound on X and the monotonicity of G, we have

uQ(t) > G(atuQ(t)), 0 < I < 1a.

The lower bound for G ensures there is a IQ > 0 so that

UQ(t) > (atuQ( t))' (I 6 Q), 0 < 1 min{tQ ta}.

Solving for UQ,

uQ () > (at) - I( - 6Q) -

> ,tr(t1),

s iico r < rQ.

%V it h the above results, we h ave conditions wh ich allow us to ensu re that ti > u.

,i,,) ( 'd t;r) > u,. W e no0w pick values of r and t r , hicl satisf: i r

r < ni in r, rQ }

1, < rnin Il IQ ,ta}
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and define uL (t) according to (4.6.13). If u 1 is identical to uL we have just proven

that u 2 = G(,X'* ul) > iui for t E (0, tl]. Since uL is monotone and continuous by

construction, u"t is, too, and the result is obtained for all t > 0. For functions u 1 not

identical to UL , the result follows from what we have just proven and a statement

for this iteration scheme analogous to Lemma 4.3.4. Similarly, for these values of r

and t r we have uQ > u L for t E (0, Ir]. Since uQ is continuously increasing, the

result holds for all t > 0. El

We are now prepared to state and prove the main theorem for this wavespeed.

Theorem 4.6.1. Existence and Uniqueness for U = U,. If ul(t) satisfies the

hypotheses of either Lemma 4.6.1 or Lemma 4.6.2, then the iteration scheme (4.6.8)

produces an upper bound or lower bound sequence, respectively, which converges to

a monotone function satisfyiing equation (4.6.6) for the scaled strain u. The corre-

sponding strain E from equation (4.6.5) is the unique solution to (4.3.1) among the

class of continuous functions which vanish for t < 0. Furthermore, these sequences

converge aniformly on the interval [0, 1[ for any finite I > 0.

Proof: The use of Lemma 4.6.1 (Lemma 4.6.2) followed by repeated application of

a statement for the iteration scheme (4.6.8) analogous to Lemma 4.3.4 produces a

decreasing (increasing) sequence of functions, each member of which is monotone

and continuous. The sequence is bounded below by uL (above by UQ) and, there-

fore, converges to a monotone function u* on (-oo,+oo). By dominated conver-

gence, u* is a solution to (4.6.6); the corresponding strain -* satisfies equation (4.3.1)

and is. therefore, continuous according to the arguments in Theorem 4.4.1.

Uniqueness of the solution is obtained from the original formulation (.1.3.1)

in terms of F; the proof is identical to that given in Theorem 4.4.1. In this

case, we note that equation (4.4.4) holds, since el( t) > Eo = 0 for t > 0 and
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since m(0) I = U2Jo.

Lastly, the uniform convergence of the sequence of functions on an in torva) (I'

follows from Dini's Theorem, as in the proof of Theorem .I.1.

4.7 A theorem for bounds via trial and error.

In the previous sections, we have exhibited means for constructing solutions

from sequences of functions which globally bound the solution, either from above or

below. The first members of these sequences provide the loosest bounds. Moreover.

the lower bounds we used, EL and u , do not resemble the global behaviour of 1h,

solutions. For the purpose of applications, bounds for the solution up to a time T

can be useful if the) can be made tight to some degree without requiring many

iterations in the constructive iteration scheme. The following theorem asserts the

usefulness of a trial and error approach to finding starting functions which provide

tighter bounds on the solution upon iteration. It allows us to make a guess for the

starting function on an interval (-oo,T 1 1 and test its iteration. If the iterate moves

up (down) on the sub-interval (-oo,T], for T < T 1 , then the iterate is a lower bound

(an upper bound) on the solution until T. In what follows, we denote by z( t) a

generic solution, either the strain e( t) or the scaled strain u( t) and we let 4I (r,

represent either F (U 2 j '* E') or G(X '* u) as appropriate for the wavespeed under

consideration.

Theoren 4.7.1. Suppose xU (xL) is a known upper bound (lower bound) for a

solution to (.4.3.1) and for which (D(xU) < xU ( (DrL) > xLj. Choose a nen-neganive

increasing function xl(') which satisfies xl(t) < xU(t) (x(t) > X0 ( ))

fort E (-oo,T11 and which vanishes for I < 0 if U > U, or which has the form

of (3.2.3) if Ue < U < U,. If there is a time T < T, so that one iteration produces
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4 (XI( t)) = x0(t) xI(t) (x2 :_ x) for allt < T, then the chosen function x, starts

a lower bound (an upper bound) sequence which converges to a solution on (-Oc. Tb

Proof: Consider the case for an increasing (lower bound) sequence. The first iter-

ate, X2, is bounded above by xU:

Xl(t) 5 x2() = 4((Xl())

.1 (P XIu( t)) < Xu(t )  t < T, "

since x, < x'- and x, _ xii for t < T < T1 , by hypothesis. Repeated application of

a statement analogous to Lemma 1.3.4 produces the increasing sequence:

XI 0 5 x2_ :: ( 0 < x3 a( t ) < ... < .,rU;(t t < T, ."

at times where the functions are not identically zero. The same argument applies

with reversed inequalities for decreasing (upper bound) sequences bounded below

by XL. Convergence to a solution with the appropriate properties is proven from

the arguments in the proofs of Theorems 4.4.1, .1.5.1 and 4.6.1. El

'A'
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CHAPTER 5: STEADY SHOCK

AND ACCELERATION WAVES

5.1 Problem Statement and Results.

We first consider, in section 5.2, the explicit dependence of sh<ock and acc.*i-

eratio>n wave solutions on the parametric wavespeed U. We show that r(t ; i-

continuous in U for solutions which vanish for t < 0. In particular, the accelerati n

wave is the limit of shock waves as U I U. Along the way, we show for two shock

acceleration waves having different wavespeeds that the faster wave is everywhere

larger than the slower wave, after the initial jump. We conclude with a theorem

which is based on this result; it allows us to construct a solution for a wavespeed U;L

from a known solution at a different wavespeed Ua, when both wavespeeds are at

least as large as the acceleration wavespeed U,.

In the next three sections, we consider the behaviour for t 1 0 and t -. oc of

solutions E( t) for shock and acceleration waves; i.e., for values of wavespeed U > U.

We first obtain the small-time asymptotic forms of E( t) - E, where e is the non-

negative value the solution takes at I = 0+ . When the strain curve f satisfies the

assumptions of section 2.3, the result obtained in section .5.3 for almost-all shock

waves is:

e()- Eo 0 ( 1), 1 1 0, (5.1.1)

where

0, f (56,).2

f '(e - (U/Uo)
2 

'

and X( t) is the normalized compliance introduced in equation (4.6.3). Moreover, the
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(IIas.-elasti(" Itock solutionI has the saIlie as% i pt otic fior ti

() ur ,Ii all-ti me result for an acc helrat io l ";1 e, for % Ili,' -1 r, I , it ..

tit. add it inal a-sutinption that (t) is regu larl -iry111g for t it ti ) *r

Pix) 1 , (0. I1  We find that t( ) is also re guiar I - ar.I v - l% i ,r -

I'(L) =- q (- ((i, ox.). where

q - > w I v re

in w h ic h is the d o011 in ant i o liii var p,,w r In thf rod u,. It i ir; tn ii c , I f - f.

sm all values of -, as in equation (46.4) In tris of the ,,al.d ut ( ). , lii , .

ili equation (1 6 51. the result we obtain ii s tict,n .I fr acrira ,tin %% a%,,!, I,

u( t i 0),I(,- 14

w h e r v

R --q -. (5 1 5
(p + q)!

Here the quasi-elastic solution differs. The result is

,Uq t Q ( t)) -  t 1 0. (5. 1.6

The final section, 5.5, is devoted to exam ples of shock and acceleration w ave

constructed for specific materials from a nunierical approximation to the iteration

sc he Imle.
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5.2 Dependence of solutions on the wavespeed

ii' (L IttI i p iiit ii o l depelenlt.l Ce " so iii , oi ' It . 1,' ], r;tlI i , -it I *

. 1-] i I and %% t 4 N1/.l' W sitm etitmi s us, th- nta 1) t I )

\\,' h ,,' h,Nk it in I'r(,perties I and 5 ,,f sec(tionr 3 3 thatt th,. ,.quilibi m tti aiu. .

;III,! , f,,I 'Ilo c~k itln , ;tcco h-1-:';t11o ll w ar;1 " e s. th e" In itia l Ju til 1
)  

% ,'; tl ;II ' 'lt ! I 
,  

l < l ';~ l k IN

fit l
, 

i ,of II., %% ;Il . It Is natural if ak if I), it -,t'Iit,11 'lfit - rif. fI

-11-4, :it~ld ,, ., i : , ' r iall t i in %% hri , ti I- i, ii I, - / " , I / .,r,.*ld

lei e m a 5.2.1. . iiiii++ s. I.uti,,is . vhuh ua i',i i/l'git<+iil// fr' i i 1. if I <

ti

ii h

h +, t 1. ) < l I 1 ,J f(,r .t l t . 1

i

1, r ... f I] l " I] \k+ Ilt l t 'a n is I fo r t < 11 ;Ir , I it e(r s Ito ck ) r a , +ra tl, i , ;t ++ a , 11 t ", Ai

corr,- sii.nl) t(1 t \% av o, l s1 Id > IU For sucI sIuItjiis. thv o i friii j( I) -( Io i

is .,, nintiuo s for It > 0. according to T heorems .1.4 1 and 4 6 I Since - < t(t 1

for ', < U+ (,(j.'3 3), thtC differenice E,(1) - (1) is either negative fr all t > 0), and

tli h proof is 'ot le)te , o r it is zero at som e fin it e time te > 0 We\- will show t I at

the latter case is contrp dictory. We subtract the equations satisfied by and

La1 ) - 1 t) 1."U;J(J 'L 1 () 'uJ* L)(t))b ( I ' u it f, I
< ( )(t) - F u(J'

since F is strictlY nwcireas ing and Ua < 11b b1y hy)oth esis I sing eqg uatio (2 3 1t

Otn thle right sidet, we obtail

t) - Lb()t) < A((J * a -2-lj U)

Now, assume that to is the first time for which Ea - Lb is zero Since 6ar) E b(r) < ii

for all 0 < r < to, the convolution on the right side is negative. liurthermore, At i.
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J'rii it 2 wu' N i t v ') f flii rtiiIis hen ii I I 1 , I J 111, r i i P i

'I' f vn,, 'ilr ) it j() to) IlI e hlrcA Pr a't , r tr it .1t c ,/ ,, -(It -I i !

I .,,f \ . i v , t114. i , > T i s;a -, ;I a rv l it -- t I ,% l 1 11, 111-1j1;4i

I I f, I I < I S ,S. / ,I > If , a 1, f 1 I.; 1 1. a, , t 'c 11 t:,

I ih ' f,,r ; j )
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mIll -. qu ' c' c rt)lniv .rg's Uniiform ly to the uiiqu1 e sd, it I ori app i, rp-ia t for thi waxr -

i,,. a-c'ording too tither TI'hor,,t .1 .I or Theorem -. ; I

5.3 Shocks as 2 1 0.

it% . toc,,, lioo i, rivin g an '(I tati on satisli,,t I, 6( I --h IF f,)r I > t \ , -

Ii 't r f - I J. + ,, fl inl vach i sie of ,q 1 a it i, 3 1 I

t, h ri i,,- (I 1; 3) tI, w ritt .1(t) . 1 f) 4 1/ i] i ti t!iv , ir olI it tto i ittt,, r- a

ii (7, 3' I ) \\ ' iii ,,I at r

f(+(I)) f(6 0 ) - A('(t) - + A(x (5.3 2
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Ihu,. fr 1 < I < to , the 1'ourd in (5.4.5) may be written

11 ,(1t) < [(1I + 0)R t / 7 (1I + 61)ui t ) ( t- .1 -7

l ,., toed at, llicatiorn iif (5 .1.3), (4.6.8), and (5.4.6) prod uces the seq ul nce of bou ri d-

t ilt ri'( i I t ii

+'- <- I. , + )-I,,. I(t) <((1 + 0)1?)V ,

+ +

x ul( (X (* u,,)(t)). (54 "1

It I fl converges to a function u( 1), according to Theoren -1 1

" -ll I, ,- 'III nu)ls ali since the functions u,, are dornln:ttei by it . cth a -

I • it,) 1 \ * u as n oo. As in (5.A.6 ). L (. x * u ) I, alo ) ,o utded

L ( \ I -it)( t < I + 6',. 0 < t < t' (5. -1

j I;) itiIv deined a convergent and therefore, Iounded sequ,nCe

i I.,. t .- It .

i'6 = SUF,{6n  . (5 4.1(,)

i T ht ,'t1

( I + , t '  1 4 , '2  .. 1 +,~l L k . < 1 4 l ) s

"iw, Il) in 1.8). we pass to the limlit as it c and llsum the geotetri

It(- i\) l ii to obi (iiairi the( u1pper bollIds

I I
,+ ) < {1 + # ) ( i + )"- t tl , ( < I < t+ .4 1".2 1

I 1 -,t 111 I A Li r tIte i.I i'llt , foir low (er )ou n tis on t It(, iterates. h h re iS a Im l, it I ,  
c iI It

ill f, an ; ai t a ii i, is lo),er houtndi oil it(t) W hicw h, c ' I l+cor llled 'A Ith equiti-

" tlii (; I I'2) pr ,iv iI '

I ti( I) .i__

i .t )

+~~ I I + 0) < I <t to- (5 .1 13--Id- -" -
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strains. IIowever, for small q (large -y),, expansion of the factorials yields

R 1- (T + P!, ) q, q - 0, (5.4.16)

w here (p!)' is the derivative of the factorial function evaluated at p and

T = 0.5772 ... is Euler's constant [5.1]. The quasi-elastic solution more closely ap-

l)roximates the solution at small times when the material is weakly nonlinear at

sin ill strains.

5.5 Numerical Examples.

In section 5.A we presented asymptotic results for acceleration waves which are

exact for a material having a specific strain curve and i, power-law compliance. Such

a compliance grows without bound and cannot represent a viscoelastic solid for all

time. To better illustrate the global behaviour of acceleration waves in solids, we

consider the steady acceleration wave problem for a material having the normalized

rexponential compliance

X( 0) = X, (I -ett II( 1), (5.5.1)

with the strain curve

f(E) = E + kEt, k > 0, 7> 1. (5.5.2)

In torms of the compliance J, the equilibrium value X , appearing in (5.5.1) is given

by:

X, (J - .o)lJo. (5.5.3)

We use a simple numerical approximation to the iteration scheme (4.6.8) to generate

approxiniuitions to a finite number, K, of terms belonging to upper and lower bound

73

N*-, . . . . N,



sequences for the scaled strain of equation (41.6.5). W e siiii il;t rlv gen eratIe1(.1 uch

quences for shocks in materials having either a lpower-law or e\ ponen tial coin pliarice

8"

combined w ith this strain curve.

Tqhe governing equation for the acceleration wave probleml is

( t) (x' *U)( t). (55.-4)

The iteration -chem e takes the form

= ((x' "k)( t))I> k 0, 1, 2, K-1 (5-5-5

quenle bourd ing sequenmees are desired for t t [0,tT].

I n o rd er to p erfo rm th e coivo lu tio n on th e ite rates u .k we use a pee

wise linear approxin sation to uk and convolve this approximation exactly with

We partition the interval [0, Tj into N subintervals of equal length given by

It =TIN. (356

The piecervise linear approximation to a function won [0,Te is

NI

LT(O0 i( i ) )= tx , ) t). 5 i l (5. 5.4 7,

h

w liere

t,. i ht and poi --. p(tj) for i = 0, 1, 2, A. .5..5 .S

The iteration sclieme for the numerical approximations is

tN = N ) 1 0, k = 0,1,2 K - 1 (5.5.91
k+1- = T ( k~t)

TN q N uk 1). T he upper bound and lower bound sequences we generate

u N(t) L NT UQ) (5.5-10)
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It ii d
dI

N Nuo (t) - L T uL t),

respectively, where UQ is the quasi-elastic solution given by

UQ(t) - (x t)) -', t E [,10 , (5.5.12)

and uL is the lower bound from equation (4.6.13):

uL(t) = rt-', t [0,T. (5.5.13)

For the strain curve considered, the constant r is r1 in the proof of Lemma 4.6.2:

( x(T) 3-t I -- -

T 4'

with the aid of equation (4.6.1 1).

From the numerical scheme, we generate the iterates u N at the mesh points t.
k

Let pN be any one of the piecewise linear uN . Its convolution at t i is:

0

Ik  (.5.15)
k= 1

where the k-th integral in the summation is given by

Ik f t p N (tI - ) dX(T)
tk  k - Itk-iN

N P- -k+l (1(i-k -X (r), (5.5.16)

J Oi k + h (tk- Ifd(,tk.a

in view of (5.5.7) and with the notation of (5.5.8). We put our results in terms

of the non-dimensional time O/tr appearing in equation (5.5.1) for the exponential

compliance. W ith the change of variables t/tr - t, we have dX(r) = x'e- dr.

Using this to integrate (5.5.16) exactly, we obtain after simplification:

'k ~ i ={( - (Y Xk - Xk-1)

Xe (V N ,kh k ~
+ h 1i-k+l - 'ri_k). [(1 + kh)e (I + (k -)h)
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The numerical scheme is now completely Aefined. It consists of equations (5.5.9).

(5.5.15), (5.5.17), and either (5.5.10) or (5.5.11) to get started.

We remark that we chose this approximation to the exact iteration schem .e

both for simplicity and since any continuous function can b: approximated arbi-

trarily closely by piecewise linear functions [5.21. For a finite number of terms gen-

erated by this numerical scheme, we can get arbitrarily close to the exact iterates

by taking N large enough.

We present the results of this scheme as a series of graphs of approximations

to acceleration waves for three values of the nonlinearity -,. In Figures 5.1-5.4
(1/1--flt.Fiue51ilu tae

we have plotted the normalized iterates 1ukXC S. I /,. Figure 5.1 illustrates

truncated upper bound and lower bound sequences for -t = 5/4. It shows iterates

1-25 of the upper bound (decreasing) sequence started by UQ and iterates 1-30

of the lower bound (increasing) sequence generated by UL. For c-ch curve in this

figure, 201 points were used in the computations, whereas, 101 are plotted. The

large space between the truncated sequences is the numerical approximation to a

bound within which the acceleration wave is to be found. Our approximation to

this acceleration wave is illustrated in Figure 5.2 along with the quasi-elastic so-

lution for -1 = 5/4. The approximate acceleration wave is the superposition of

the indistinguishable ,t7-th members of the upper and lower bound sequences of

the previous figure. Figures 5.3 and 5.4 illustrate the quasi-elastic solutions and

similar approximations to the acceleration waves for - = 2 and - = 5, respec-

tively. In Figures 5.2-5.1, all 201 poizts used in the coml)utation of each curve are

plotted. We note that the exponential compliance is regularly-varying as I 1 0 with

power p = 1. The graphs for these three values of'y illustrate approximations for ac-

ci-leration waves which are regularly-varying fort 1 0 w ith power q = I/(- I); these
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w~aves have initial slopes which are zero (- = /4), finite (-Y 2), and in fi -

nite (-y = ).- We recall from the previous section that the qjuasi-elastic solti ton

is asymip[toltically incorrec:t by a mnultip~licative factor, for t 0.

1.0

0.6

0.6G

0.2

0. 0

0 5 10 15 20

Figure 5.1. A pproximations to bounding sequences for the strain acceleration wav e

for -1 = 5/4 and an exponential compliance. The ordinate variable is(ke) 1

'le abscissa rep~resents 1/fr.
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1.0

0.8

0.6

0.4

0.0 I f I -
0 5 10 15 20

Figure 5.2. The quasi-elastic solution (top curve) and the superimposed 47-th

iterates in the upper and lower bound sequences representing the approximate nu-

merical solution for the strain acceleration wave with -y = 5/4 and an exponentia;

compliance. The ordinate variable is (k/Xe)(lI/Y-l' . The abscissa represents t/t.

78



p

-T -- 1 --- T -- T T~~ -- I T 1 7 IT

1.0

0.8

0.4

j%

0.2

0.0

0 2 4 6 8 !0

Figure 5.3. The quasi-elastic solution (top curve) and the superimposed 15-th

iterates in the upper and lower bound sequences representing the approximate nu-

merical solution for the strain acceleration wave with -y = 2 and an exponential

compliance. The ordinate variable is (k/Xe)(1/'-1)E. The abscissa represents t/tr.
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1.0

I-t

O.G

0./IL

0.0

0 2 4 6

Figure 5.4. The quasi-elastic solution (top curve) and the superimposed G-th

iterates in the upper and lower bound sequences representing the approximate nu-

inerical solution for the strain acceleration wave with " = 5 and an exponential

compliance. The ordinate variable is (kIXe)(l['t - . The abscissa represents t/tr.

g.
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We now consider problems for steady shocks in materials with strain curves

of the form (5.5.2). Our results are given in terms of _U, the scaled strain of equa-

tion (4.6.5) normalized by its value at the discontinuity:

ii( t) = u ( )/,,o = s ( t)l~o. (5.5.1 )

After we derive an equaton for _u, we present graphs of numerical approximat;ons

to its solutions based upon the scheme presented above for convolutions with an

exponential normalized compliance. We then modify the scheme for power-law

normalized compliances and present the graphs of approximations for shocks in

such materials.

To obtain the governing equation for V, we cancel f(e,) = Ac, from both sides

of equation (5.3.2) and use (5.5.2) explicitly for f:

k(e( t))7 = (A - 1)E( t) + A(x , t)(t). (5.5.19)

(Recall A = (U/U 0 ) 2 .) In terms of the scaled train, this is:

- ( t)) = (A - ) U( t) + A(X u)( t). (5.5.20)

We note that this equation reduces to (5.5.4) governing acceleration waves at A = 1.

For A > 1, the jump in the shock wave has the value:

u o = u(O) = (A - 1)1-I, (5.5.21)

since x(O) = 0 implies that the convolution in (5.5.20) vanishes at t = 0. "'hen %%e

divide (5.5.20) by u we obtain:

(U(t)) = -(1) + * -)(t), (5.5.22)

w here

A
-( ) = x( 1). (5.5.23)A - 1
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7,NIL

T he c r re s 1) n I n g It veI ia t I chin I. fi I. K 1i ll III a sequol~ IC4 Is

W'e a gaili chioos1 tt he quasi-e>lastic solitioni to start our utppevr 1)i1i u ,I s,(IU, -I

,5o(t) iT fg~ ) " ( (t)+± ( t)) ' (-, 2, F,;)

It is easy to show that a starter for a Iow 'vr )ouItid seq u v -e is 1 th(. 11,. iiti si,.

fiU (tit

",r the exponential coi-pliaiice in equt at ion (5-5-1), (jll i ollIll ai/ l ii ' ,f 110,

s" lilou o1 its juIin 1) value requires specificatioii of th e )aramI ete(,r

* A
C = X(5 .F 7 5 17)A-I1

For any choice of c > Xe the normalized wavespeed being conside(red is:

C{

(5. 5 -.2 )

In what follows, we have ihos" c I I to illustrate shock behaviour (dependting oil

the nonlinearity "1, This necessarily restricts the compliaice to have an equilibriuni

value , < 1: however, this is not a severe restriction. M aterials for \% hich \, << I

are nearly elastic; with small vi'llu s of \,, the graphs in Figures .5.5 5, S epr,.

snt iuilloriwal approximations to shocks at wavespeols just above the acclora-

tioni waves;;eel ill noarly elastic i aterials. .'urthermiore, v\alu.s of X, aplroachiing

In ity represent miore strongly viscoelastic solids having equilibriumn iicomp Jllalces

near J, = 2J,, according to (5 5 3). For such materials, the graph!, re)resenit high

spoed cases, A >> I
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10

0 2 4 6 2

Figure 5.5. Approximrationts to bounding sequences for the strain shock wv

for 5~ssF/1, am exponential comnpliance and c =1. The ordinate variable is £/-z.

'b';sts'-saL rsjpriseris tt.

Vi it ri fflui-izsratvs triincated upper bound aid( lower bounid shock sequenci-

fr ~ ~ ~~, g/i o i i s t, liurv )i.I fi r accelerato Iae I cr,, \% sho~t~

311
1 rtht (iit-t I-, wnit i>, 4f the derreasirig sequlence it. staurts, along %with tire- st-p

fit i t ri s ;Ii :u ti I tic i' st 25 Iniiici be rs of its Inc eas.-q se ten ce A gami 201 Iioti

i~ ~~ 'r i s it ititat tor anid 101 are plot ted for evjci cutrve Fiuires 5 6 -

illuistratie thre qutasi-eiastic shock solutions and approximrations toi tire shock solutions

for -1 5/4, 2, and 5, respectively. For these graphs, all *201 comnputed 1oints are
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slu tion for t 1 0 ( 5. I) It i. o% i dent fr i t h 's fig uir,' t hat II itqu a i-cht~t "

solution is accepta)le as an a.l)l)I'rxtiiatiOn for a quadratic ilin;ritv % Ith th-,

tm pliian e; it is very goo d for -; - 5. 1owever, for 1 5/-1. it Is tn1 1 rtter thai I;

loose upper bound, except ill thI siii ll-t ime asynij)itotic regioti

XII

*~q~~%J. .. JS~ *-..J. ~ ~ 47 d - ~~ ~ ~ ''~ ~ ~ ~ ''~C ~,~ -



15- if
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10,

02 4 6 o P0

Figure 5.6. The quasi-elastic solution (top curve) and the su perinmposed 45-th

iterates in the uipper and lower bound sequences representing the approximate nu-

merical solution for the strain shock wave with '~=5/4, an exponieltial compliance.

arid c 1I The ordinate variable is EIE,. Trhe abscissa represents, t/tr-
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2.0

1.5

0.0

0 2 4 6 8

F iguire 5.7. The quasi-elastic solution (top curve) and the superimposed 14-th

itecrates in the uplper and lower bound sequences representing the approximate nu-

i rial solu tioni for the strain shock wave w ith -y = 2, an exponential cornpliance.

a n (I r I Th e ordi nate variable is /Elc. The abscissa represents itt. I

86



1.0

o.5

L
0.0

044
Fiu e58 h us-lsi ouinan h u ei p sd6t trtsi K

Friure v.8.aThe qsl-.ela bs c sstio esand s t uprimoe -bitrtsi



AD-AI 548 (U) AIR FORCE INST OF TECH WRXGHT-PATTERSON AFB OH

7 UNWCASSIIED T IMRHOLA 1987 .AFIT/CI/NR-97-78T /201 NO



I ~ ~ 2 
__ _ i . 2.5

IILA
.25S£ L

'11



For the exponential compliance considered thus far, we could have success-

fully used a piecewise linear approximation to the entire integrand in the convo-

lution; i.e., the familiar trapezoid quadrature rule (5.3]. We chose to integrate the

iterates exactly with dX in anticipation of the singular problems which we now

consider, involving the power-law normalized compliance:

XU0 = X t" p E (0,11. (5.5.29)

The numerical scheme is modified by the evaluation of the integrals Ik in equa-

tion (5.5.16). The non-dimensional time in this case is xO t. We make the change

of variables X t t in (5.5.16) and use dx(r) = pr1 -' dir. The result for Ik after

simplification is:

= [(I - kik + k Pi-k+l] -- Xk-1)

(N - P h P (k P + 1 - (k - 1 )P+ 1). (5.5.30)-~ + V kp + I

For the numerical scheme using (5.5.30), we again generate upper bound

and lower bound sequences which are started, respectively, by L N 
UQ and L N UL.

The resulting approximate solutions for shocks in a nonlinear power-law material

are illustrated in Figures 5.9-5.17. These figures include all combinations of non-

linearity -1 = 5/4, 2, and 5 with compliance powers p = 1/10, 1/2, and 9/10. For

these figures, we used 401 points in the computations, all of which are plotted for

each curve. We have removed the wavespeed from the the problem by plotting T

against the non-dimensional time [Ax,/(A- 1l)1/Pt. It is apparent from these figures

that, for the problems considered, the quasi-elastic solution is better as an approx-

imation to the solution in a power-law material when the nonlinearity 7 is large, or

when the power p is small, or both.

88

-- 6'6 ~-



20I f I I f 1
20 

'i5

i0

5

0

-0.5 0 0.5 1 1.5 2 2.5

Figure 5.9. The quasi-elastic solution (-..p curve) and the supe-imposed 50-th

iterates in the upper and lower bound sequences representing the approximate nu-

merical solution for the strain shock wave with - = 5/4 and p = 1/10. The ordinate

variable is e/e,. The abscissa represents [.\X /(\ - IW /Pt
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-0.5 0 0.5 1 1.5 2 2.5

Figure 5.10. The quasi-elastic solution (top curve) and the superimposed

46-th iterates in the upper and lower bound sequences representing the approxi-

mate numerical solution for the strain shock wave with -y = 5/4 and p = 1/2. The

ordinate variable is c/E. The abscissa represents [Xo/(A - )llPt.
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20
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Figure 5.11. The quasi-elastic solution (top curve) and the superimposed

41-st iterates in the upper and lower bound sequences representing the approxi-

mate numerical solution for the strain shock wave with - = 5/4 and p = 9/10. The

ordinate variable is E/e,. The abscissa represents [AXo/(A - 1)I 1 'Pt.
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Figure 5.12. The quasi-elastic solution and the superimposed 14-th iterates in the

upper and lower bound sequences representing the approximate numerical solution

for the strain shock wave with y = 2 and p = 1/10. The ordinate variable is E/Eo

The abscissa represents IAXo/(x - I) 1 /P1 .
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-0.5 0 0.5 1 1.5 2 2.5

Figure 5.13. The quasi-elastic solution (top curve) and the superimposed

14-th iterates in the upper and lower bound sequences representing the approxi-

mate numerical solution for the strain shock wave with -y =2 and p =1/2. The

ordinate variable is ce,. The abscissa represents t)./(Ax - Wj/PI.
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Figure 5.14. The quasi-elastic solution (top curve) and the superimposed

13-th iterates in the upper and lower bound sequences representing the approxi-

mate numerical solution for the strain shock wave with - = 2 and p = 9/10. The

ordinate variable is cEe, The abscissa represents [I\x,/(Ax -I)j''Pl.

94



I I tj li t~tlit jI hF ItTJI

1.0

0.5

0.0

_LO -A II-

-0.5 0 0.5 1 1.5 2 2.5

Figure 5.15. The quasi-elastic solution and the superimposed 6-th iterates in the

upper and lower bound sequences representing the approximate numerical solution

for the strain shock wave with -1 = 5 and p = 1/10. The ordinate variable is c/,.

The abscissa represents [Ax,/(A - 1)I1/Pt.
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Figure 5.16. The quasi-elastic solution and the superimposed 6-th iterates in the

upper and lower bound sequences representing the approximate numerical solution

for the strain shock wave with y =5 and p =1/2. The ordinate variable is /,

The abscissa represents [,\X./(,\ - )JIPt
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Figure 5.17. The quasi-elastic solution (top curve) and the superimposed 6-th

iterates in the upper and lower bound sequences representing the approximate nu-

merical solution for the strain shock wave with -1 = 5 and p = 9/10. The ordinate

variable is c/e. The abscissa represents [AXo/(A - l)]lPt.
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CHAPTER 6: SOLUTIONS BELOW THE

ACCELERATION WAVESPEED

6.1 Prelude.

In this chapter, we consider problems for non-negative steady strain

waves, E(t), traveling at speeds slower than that of the acceleration wave, i.e., for

U < U.. We have shown in Chapter 3 (§§3.3) that there are no non-negative non-

trivial steady waves which travel at or below the equilibrium wavespeed Ue. From

Chapter 4 (§§4.5), we know that when U E (Ue, U0 ) there are continuous solu-

tions E( t) which are asymptotic to e as t - -oo with a value of r which depends

on U and the material compliance. In section 6.2, we consider the problem for such

a solution when the wavespeed is perturbed from the limiting value U,. We denote

by 6 a small parameter and obtain solutions c( 1; 6) which are asymptotically correct

as 6 1 0 when U 2 
- U2(1 + 6). In section 6.3 we produce numerical solutions for all

wavespeeds U < U, in power law materials with quadratic nonlinearity.

U 2 = U2(1 + 6).

We first derive the leading term in an asymptotic series for c( t; 6) as 6 1 0

when the strain curve f(E) is specified no more completely than in equation (2.3.1,).

In order to obtain the next term in such a series, or to just estimate the size of the

next term, we need to further specify f. We do so in the rest of this section which

we devote to strain curves which are accurately represented by a power series for

small E. For these materials, we obtain the first two terms in the asymptotic series

for c along with an estimate of the size of the third term.
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We recall that the governing equation is:

f (e) = U2(p tI ), (6.2.1)

subject to

6(-oo) = 0. (6.2.2)

We leave implicit the dependence of e on 6 and we seek a solution e such that

E( t) - e r t ,  t - -00 (6.2.3)

where r satisfies

U rJ-(r) = 1,(6.2.4

according to equations (4.5.1), (3.2.3), and (3.2.4). We recall from equations (3.2.5)

and the discussion following them, that r 1 0 as U I Ue. Thus, r is a small parameter

when 6 is.

We proceed with expansions of both sides of (6.2.1) which will eventually

result in an equation containing powers of the small parameter 6 from which we

can obtain equations for the terms in an asymptotic series for e. Equation (6.2.3)

suggests the scaled time variable:

0 = rt. (6.2.5)

Throughout, we denote by hatted variables functions of 0. For example,
' e(t) = g(O)

(6.2.6)

J(t) = (0),

and so on. Using equations (2.5.3) and (6.2.5), the convolution is:

(J'• e)(t) = (J * e')(t)

= (J, *)0

JO i(0qd(i)

-00
= J(o - ,)i'(,) d, (6.2.7)

-00
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where we have used the continuity of E at these wavespeeds (§§3.3) in the last line

of (6.2.7). Thus, the governing equation (6.2.1) becomes:

f(g(p)) = U 2 (j • e')(0). (6.2.8)

The change of variables 0 - - v? in the integral yields

e( * ')(O) = f 1(0 7)j(,j) dl .  (6.2.9)
0

We use (5.1.8) to write

J(O) = J[ 11 (0)- ¢(0)] (6.2.10)

in equation (6.2.9) and evaluate the first integral to obtain:

( e * ')(0) = Jei(o) - Je f C'(0 - ,),(ii) d,?. (6.2.11)
0

We assume that E is sufficiently differentiable to do the following. We expand

el(0 - '7) about 0 and obtain:

(ji*')(0) = J'e(o)-J' f [e'(O)- i"(o)+ 12 '(0)_ + 1(. ) d,). (6.2.12)

Let us define

= T P(r) d-; , = 0,1,2, ... , (6.2.13)
0

so far as these moments exist. Then,

f00

fo lJ (,7) di? rj+lOj. (6.2.14)

Using (6.2.13) and (6.2.14) in (6.2.12), we have:

(iei')(0) = Je 9(0) - r~boe'(O) + r V '(O) - 13 02 (0) + .... . (6.2.15)

If the moments Pj fail to exist beyond some value of j, the terms which do make

sense give the asymptotic behaviour near r = 0 (i.e., near 6 = 0) 12.51. In what fol-

lows, we assume that the moments exist so far as we need them for computation.
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Wherever the small parameter r appears explicitly in (6.2.15), we need to

replace it by an expression in the small parameter 6. Additionally, we will ex-

pand e in a series in 6, the form of which series depends on the strain curve f. To

first determine how r depends upon 6, we use equation (6.2.4) and the equalities

U2 = U2(1 + 6) = J-'(1 + 6) to write:

rJ(r) = Je(1 - +.). (6.2.16)

Recall that J(r) is the Laplace transform of J(t). We transform equation (5.1.8)

to obtain:

rJ(r) Je[I - ro(r)]. (6.2.17)

For small r:

J 00

-(r) = e-rt ,( t) dt
0

S - rt+ - + .| t)dt
1 2

0- i1 r + -. 2 r 2 
- + "'", (6.2.18)

2!

with the use of (6.2.13).

Using (6.2.18) in (6.2.17), we have:

rJ(r) = J,[1 - 0 r + 1 .2r3+ (6.2.19)
2!

Comparison of (6.2.19) with (6.2.16) suggests a power series expansion of r in 6:

r = 6r I + 62r 2 + 6 3r 3 + . (6.2.20)

When we use (6.2.20) in (6.2.19) and equate the result with (6.2.16), we find that

the coefficients of the powers of 6 in the expansion of r are:
1

r*1 -
7P0

r2= r 1 - 1 (6.2.21)

r3 r (- 202r + 20 1 rlr 2 +

and so on.

101



We insert (6.2.20) in (6.2.15), use U 2 j_ = 1 ± 6, and collect the powers of 6 to write

U 2 (j * e')(O) - e(O) = 6(1(0) -el())

+ 6 2 r 2 e(It (0) -e'0

+ 0 (63e(8)), (6.2.22)

where we have used rlb 0 = 1 in the 0(6) term and 1 + r 2 V0 = r2,1 in the 0(62)

term, in view of equation (6.2.21).

So far, we have yet to expand 9 in a perturbation series in 6. For the first case

we consider, the strain curve is specified only as in (2.3.18), and the expansion of E

is crude:

(O) = s,(e) + 0(60), (6.2.23)

where the exponent a is to be determined and el(O) and its derivatives are 0(l).

We insert (6.2.23) in (6.2.22) and obtain:

u 2 (j * ')(O) - e(O) = ba+l(, 1 (O) - jl(O)) + o(6a+1). (6.2.24)

From (2.3.18) we have:

f(e) - e = ke7 + o(e7). (6.2.25)

Using (6.2.23) in (6.2.25), we obtain:

f(j(O)) - j(0) = 6*,ak(el(O))"l + o(,ya). (6.2.26)

When we put (6.2.24) and (6.2.26) in the governing equation (6.2.8), the lowest

ordr terms will enter with the same order of 6 provided

1
a= (6.2.27)

Thus,

E(t) = e(O) = 6r-1 1 (0) + o(7- 1), (6.2.28)
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and el is determined to within an integration constant from:

I
e0 - 1 + k9' = 0. (6.2.29)

To integrate (6.2.29), we note that it is separable,

1 d 1d ,6=1 dO (6.2.30)

1 - e

and may be put in the form

-- dO, (6.2.31)
1 - ke't

/ a

where a is given in (6.2.27) and

Y = Inel. (6.2-32)

Upon integration of (6.2.31), we have:

keOY/ a 9 eO 9o)/a
1 + e( O-Oo)/a (6.2.33)

where 00 is the integration constant. In this problem, the time origin is arbitrary.

We choose to set this origin with 00 = 0. Using (6.2.27) and (6.2.32) to write the

result in terms of 91, we have:

e(-1)S1+ e( 't - 1) O
} (6.2.34)

This may be written in terms of the hyperbolic tangent as:

= I + tanh 2 0) (6.2.35)

With the use of (6.2.5), we observe from (6.2.34) that el has the asymptotic form

required by (6.2.3), to within the arbitrary time shift implicit in the multiplicative

constant k 1/(Y-1)

We now consider this problem in more detail for strain curves amenable to a

power series expansion:

f(C) = C + C 2 + 3 .... (6.2.36)
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In this case, it is reasonable to assume, at the outset, that

j(0) 6 be,(0 ) + 62f 2 (0) + 0(63), (6.2.37)

where the functions i1(O) and i2(0) and their derivatives are 0(1) with respect to 6.

We use (6.2.37) in (6.2.36) and obtain:

f(e) _ e = 62 a2 + 63(2a 1?2 + j3) + 0(6 4). (6.2.38)

Similarly, from (6.2.37) and (6.2.22) we have:

U2 ( j * - 6 6 2(, - l

+ 3 (e 2 - e' + rl2 l-p I  -1 )

+ 0(64). (6.2.39)

We equate (6.2.38) and (6.2.39) according to (6.2.8) and obtain equations which i1

and e2 must satisfy. From the O(62) terms, we get equation (6.2.29) for this case:

e 1 el + ae2 = 0. (6.2 40)

The 0(63) terms produce an inhomogeneous differential equation for i2 with vari-

able coefficients which are continuous functions of 0:

'(0) - a(O)?2(0) = b(d), (6.2.41)

w here
a(O) = (I - 2a,(0))

2 I# (6.2.42)
b(O) = r bi(i'(O) - el(1) .

We obtain il immediately from equation (6.2.35):

ii(o) = + tanh(O/2)]. (6.2.43)

The solution for 92 is the sum of a particular integral and the homogeneous solution:

i2(0) = 21() + (2(O). (6.2.44)
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The solution for the homogeneous equation is in general:

e(0) = C exp a(C)dC} (6.2.45)

where C is the integration constant. With a(O) and kl(O) given by (6.2.42) and

(6.2.43), the integration is for gh is straightforward. The result is:2

eh(0) = Ccosh- 2 (0/2). (6.2.46)
P2

For 2(0), we have in general:

92(0) = f exp I a(C) d I b(,1 ) di. (6.2.47)

Using el(0) in equations (6.2.42) for a(O) and b(O), we have after much simplifica-

tion, the intermediate result:

3 /2
2(' = cosh- 2 (O/2) Cn sinh(ncosh 2 - n )dC, (6.2.48)

n=O

where

CO = - 2 = -

a3 C2 (6.2.49)

C1=-I ¢I + 3!) 3 =I 1 3(..9

2a p 2 2 t32 p2 2at

for which we have used (6.2.21) to write the cn in terms of the compliance mo-

ments, 0 0  and t l, defined in (6.2.13). Again, the integrations in (6.2.48) are

-P -hstraightforward. After integrating and simplifying the result for e2, we add it to 92,

according to (6.2.44). The result for 9 2 (0) is:

L2 (0) = - [tanh(0/2) + tanh2(0/2)]

-1 t . (0/2) + In [cosh(0/2)]) (6.2.50

cosh (0/2) 2C k+\2a -2o PI ( ( + In I
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To verify that '~2 (0) has the correct asymptotic property for 0 -~-oo, we use

the following identities:
e+ -z

cosh x
2 (6.2.51)

2ex
tanh z= - -1.

ex + CeX

For large negative x:

eZ
cosh x -2Z 0(.5)

tanh x -2e 2 z 1,

T Ii u s,
2

tanh(0/2) + tanh (0/2) -~ -2e

cosh2 2(0/2) -4e6 0 - -0o. (6.2.53)

In I[cosh(0/2)] - - (0/2) - In 2,

Using (6.2.52) and (6.2.53) in (6.2.50), we obtain:

g"(0)~ -t-0+4c [' - -' In 2  Ce 0 - -0. (6.2.54)

As in the solution for ! 1 (0), the integration constant C serves to define the arbitrary

ti-n.e shift of the solution.

WVith i and ' 2 given in (6.2.43) and (6.2.50), our solution for i(0) is com-

plete, so far as we have expanded it in equation (6.2.37). Since i1 and i2 are bounded

in 0, the expansion is uniformly asymptotic. To go on to higher orders in the so-

lution, one merely continues the expansion of (6.2.37) with terms 6 113 (0) + 0(6')

and obtains an equation for e3 (0) in terms of 11 and i 2.

As a final rem ark on the solution we have obtained, we show that it produces

the correct equilibrium value, to within O(63). From (6.2.43) and (6.2.50), respec-

tively, we have:

lirn 11 (e) =+
0- +00 a (..5

lim e2(0) = - (6. 55)
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Thus, the equilibrium value for 9(0) from (6.2.37) is:

6 62
-e = - + 0(63). (6.2.56)

We recall from section 3.3, equation (3.3.2), that the equilibrium value satisfies:

f( e) = U2jce6. (6.2.57)

Using U 2 j_ = 1 + 6 and the expansion of f in (6.2.36), we have from (6.2.57):

ae + 3e + 0(el) = 6. (6.2.58)

When we solve (6.2.58) for te in terms of 6, we obtain equation (6.2.56), the required

result.

6.3 Power Law Materials with Quadratic Nonlinearity.

We now obtain steady wave solutions at all wavespeeds below that of the

acceleration wave for materials having a purely quadratic nonlinearity in the strain

curve:

2f (C) = C + a62 C > 0. (6.3.1)

Our solutions apply for two different classes of material compliance models. The

first class is characterized by compliances J which have a non-zero initial jump, J0 ,

followed by a power law normalized compliance (§§4.6):

J() = J[1(u) + CP(t)]

IP (6.3.2)
P(t) -, p E (o,l,

where p! is defined in equation (2.4.11) and C is a positive constant. Another class

of material models is defined by a power law compliance with no initial jump:

J(t) = C(tP), p E (0,11, (6.3.3)
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where 6 is a positive constant. In such a model, p is the log-log slope of the

time dependence of J and is fairly constant over broad ranges of t in real materials

(see, e.g., Ferry [2.3]). In either model, p = 0 -.orresponds to purely elastic ma-

terials. Additionally, neither compliance model has a finite equilibrium value; the

equilibrium wavespeed U 2 = 1/J is therefore zero. Steady waves can exist in these

materials for all non-zero values of wavespeed. Since the power law material in

equation (6.3.3) has no initial jump, it cannot support steady shock or acceleration

2wave solutions; the acceleration wavespeed Uo = 1/J, is infinite for J, = 0. For

such materials, the steady wave solutions produced in this section apply for all finite

wavespeeds U E (0,oo).

For either compliance, we reduce the problem to that of solving the same

nonlinear integral equation with a singular kernel. For the normalized power law

model (6.3.2) with the strain curve of equation (6.3.1), the governing equa-

tion (3.1.10) yields:

(1 - A)E + a = AC(P '*)( t), (6.3.4)

for which we recall the definition of A given in equation (5.3.3):

U Jo = (U/o. (6.3.5)

For the wavespeeds of this section, we have A < 1. We introduce the scaled strain

u( t) = - C( t) (6.3.6)1-A

and obtain from (6.3.4):

2AC
u( t) + u2 (t) = - A (P' u)( t). (6.3.7)

The positive constant multiplying the convolution may be absorbed by introducing

the scaled ,on-dimensional time

/A= ( )P. (638)
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We then have

U'(,?) + V2 (,/) = (P I' )( /), (6.3.9)

where

'(/) u(t). (6.3.10)

Similarly, for a pure power law compliance defined in (6.3.3), equation (6.3.9) ob-

tains when u and t/ are defined as

u( t) = as( 1) and ,1 = (U2C) 1/pt. (6.3.11)

For both classes of materials, equation (6.3.9) is the nonlinear integral equation to

be solved for V. The kernel P'(i) is singular for p E (0, 1). If p = 1, the kernel is

the Heaviside step function, with which convolution is a pure integration. In this

case, we have

U (,7) + U-2(,,) f 0 u(s) ds. (6.3.12)

For any differentiable nonlinear function f(u), the integral equation

00f(u) = ] (r)dT (6.3.13)

may be differentiated to obtain

fI(u)d(In u) = dr. (6.3.14)

Integration of (6.3.14) gives u implicitly:

J f'(s) (ds/s) i - 1, (6.3.15)

for an arbitrary shift to. For our quadratically nonlinear problem with p = 1, the

exact solution from (6.3.12) is therefore:

In i-(,7) + 2U(iq) = q1 - 1o- (6.3.16)
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For values of p E (0, 1), the singular kernel in the convolution complicates the

problem. Our solution combines a series representation for the exponentially

small "toe" of the wave, valid until some TIT E (-oo,0), with an iterative solution

constructed on the interval [1T, V), for any j7 > tiT. We first discuss the series solu-

tion. In the proof of Theorem 4.5.1, the existence theorem for these wavespeeds, we

used bounds analogous to

ey - C1e2 t < iT(r) < er7, (6.3.17)

for t/ sufficiently small with a positive constant C' . This suggests we try an alter-

nating series solution in powers of er7 :

u-(rl) : Z e(k+ l ),i (6.3.18)

k= 0

We assume at this point that this series is absolutely convergent for q small enough

so that we may square it for use in (6.3.9). We will prove that this is so once the

coefficients ,-__ are determined. We have
j=00

-2 00 k (k+2)t7Ui (1) =Y (c * ), (6.3.19)

k=0

where (c * c)k represents the discrete convolution of coefficients:

k

(c* Ok = E ) k-jcj' (6.3.20)

j=0

We need the convoluton of P' with an arbitrary exponential:

(P' * e~n)(n) = I f p(tl - 9)P-lek' ds
P 00

= k-Pe , (6.3.21)

with the use of (2.4.11). We use equations (6.3.18), (6.3.19), and (6.3.21) in (6.3.9)

and obtain:

00 00 00

Co + F, kek + Y (e * )kek " = 0 K0 + F CkKkek', (6.3.22)

k=1 k=1 k=1
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where
1

Kk = (k )P k = 0, 1,2, (6.3.23)

With the observation that K 0 = 1, we see that c0 is arbitrary; we choose c o = I to

obtain the solution which, according to (6.3.18), is asymptotic to e'7 for it- - 0 .

Since {ckr} ¢' is a linearly independent set, the coefficients in the series of (6.3.18)k=-

are determined from the recursion relation:

CO = I

-( * c) k 1  (6.3.24)

Ck - , k = 1,2,3,.

We note that (c* c) 0 = co 1. Furthermore, Kk E (0, 1) for k > 1. Thus, c1 < 0. It

follows by induction that the coefficients Ck alternate in sign, since the summation

(the discrete convolution) involves terms which are either all negative or all positive.

Given the series for _U defined by (6.3.18) and (6.3.24), we must show that

it converges absolutely on a non-empty interval (-cc, 'ITl. Viewing (6.3.18) as a

power series in ef1 , we are, in effect, looking for a non-zero lower bound on the radius

of convergence of the series
00

Si(z) = E Ick z k . (6.3.25)

k=0

It is difficult to directly estimate the growth of the coefficients in this series. We

note for later comparison that the coefficients obey

IckI > (c * c)k- 1, k = 1,2, (6.3 26)

We instead consider the series

00

2( z) = Z bkzk, (6.3.27)

k=0

with strictly positive coefficients defined by

bk = ( ) Ck( - K1 )k, k= 0,1,2, (6.3.28)

ill
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If S2 converges for Izi < R, then S, does so for Izi < (1 - K 1 )R. Consequently, the

series in (6.3.18) for u" converges absolutely for il < In [(1 - K 1 )Rj. To show the

convergence of S2, we first determine the recursion relation for its coefficients. We

will then show that these coefficients are dominated by those of a power series with

a non-zero radius of convergence. Using equations (6.3.24), (6.3.19), and (6.3.28),

we obtain the recursion relation:

b0= I

bk = (b* b)k_ 1 , k = 1,2, (6.3.29)
1- Kk

Observe that Kk < K, for all k > 2. Therefore,

bk < (b, -b)k l, k = 1,2,..., (6.3.30)

with equality only at k = 1. We have transformed series S 1 whose coefficients

are bounded below by their convolution, equation (6.3.26), into series S 2 for which

the coefficient convolution provides an upper bound. Consider now the se-

quence {dk}'k=_ of positive numbers defined by:

do= 1

(6.3.31)

d k = (d, d)k*l.

Since b0 = d o = 1, it follows from (6.3.30) and (6.3.31) that

bk : < dk, k = 0,1,2, ... , (6.3.32)

with equality only at k = 0,1. The sequence {dk}k _O dominates the se-

quence {bk}k=O. We now exhibit a function which generates a power series having

a non-zero radius of convergence with coefficients which obey the recursion rela-

tion (6.3.31). It is

g( Z) = 2(1 - V1 _-4z) (6.3.33)
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with the branch of the square root which is positive when its argument is real and

positive. For Izi < 1/4, we may write g as a convergent power series:

00

g( z) E gkz , (6.3.34)

k=O

where the sequence of coefficients can be determined, for example, by

expanding the square root in a binomial series. In particular,

go= 1

and

gk > 0 for all k. (6.3.35)

The series is absolutely convergent and we may square it:

g2 ( z) Ej (g * g)k z k
. (6.3.36)

k=O

From (6.3.33), we eliminate the radical to obtain

z(g 1)= z 2 . (6.3.37)

Using equations (6.3.34) and (6.3.36) in (6.3.37), we have

00 00

Z gk+ E (g * g)k +2 (6.3.38)

k=1 k=O

where we have used go z O = 1. Upon adjustment of the indicies on the right sum-

mation, we see that

gk = (g * g)k- 1 , k = 1,2 ... , (6.3.39)

in view of the linear independence of {zk}oo__. Since go = 1, the coefficient

sequence {gk}lk° 0 is identical to the sequence {dk} k=O" Thus, the convergence

for jzi < 1/4 of the series for g which dominates S 2 implies the convergence of S 2

in the same circle. Hence, for any 'IT which satisfies

< In [(I - Kfl/4], (6.3.40)
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the series for iu(YI) in (6.3.18) converges absolutely, at least for all q _ IT

Since 1- K 1 < 1, we have 'IT < 0. We note that the series S 1 diverges for 1zj > 1/4.

For, equations (6.3.26) and (6.3.39) with go = 1 imply that the coefficients of S1 ( z)

dominate those of the series for g( z), which series for g diverges outside the cir-

cle Izj = 1/4. While the series for _u may converge absolutely for some q/ larger

than ?T, it diverges absolutely for q/ > In(1/4), for all values of p.

We have thus far solved the problem on the half-line j? < 'IT, where W(Y1 ) is

given exactly by the alternating series defined by equations (6.3.18) and (6.3.24). We

construct the solution for tj > tIT by iteration of monotone sequences of monotone

functions, much as we did for the earlier constructions of shocks and acceleration

waves. For the current problem, however, each iterate involves, for Y/ > TITI a

contribution from the series solution for < 1T. The iteration scheme is:

uk+l(1)=F((P*uk) (1)) (6.3.41)

where we now denote by F the inverse of _-+ iT2. We first show that an increasing

(lower bound) sequence is started by

( V 7), T; (6.3.42)( (NT), 7 >1 rT ;

where _U is the known series solution for q_ IT" Recall that u is monotone, accord-

ing to Theorem 4.5.1. For Yj > ?IT,

(P ' * _ 0)('11) P(,I - s) d- 0 (s)

-00

> (P ' ) (iT), (6.3.43)

where we have used the increasing nature of u0 and P along with the fact

that d-U = 0 for Y, > ?IT- Since F, too, is increasing, we have

u-(1i) = F((P*io)('i)) > F((P*TO)('IT)) = U071) = U007), 11 > 17T (6.3.44)
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and the assertion is proven. Furthermore, i-1 is bounded above by e'1 , in view of

Lemma 4.5.1. Theorem 4.5.1 ensures that iteration of u, converges to the solution u.

Similarly, a decreasing (upper bound) sequence is started by the discontinuous

starter defined by:
Uo(,,) T ( ) -

e { , 11 > 'IT. (6.3.45)

For il > 'IT,
(( t 0  < p' * e' = ell. (6.3.46)

according to Lemma 4.5.1, since W({1 ) < el. Thus,

U-l(17) < F(eq) < el = -o(ti), ' > fiT. (6.3.47)

All iterates in the resulting upper bound sequence are bounded below by the

lower bound starter of equation (6.3.42), since -1 (t) is so bounded, in view of

Lemma 4.3.4. Accordingly, the upper bound sequence converges to the solution 7.

We remark that the discontinuity in the upper bound starter is not present in the

succeeding iterates, since P is continuous.

We again resort to a simple numerical scheme to generate graphs of approxi-

mations to the upper and lower bound sequences discussed above. The results we

present are not for solutions asymptotic to e'1 for v1 -- -oo. Rather, we consider

the shifted solutions

u('1) - - I17TI), (6.3.48)

so that the series solution for hi is always used for q !5 0. We have

0

fi( ) = z cke ) , k +- 0, (6.3.49)

k=O

where

jk = e e- (k + l)l' rl, (6.3.50)
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and 17T is chosen according to (6.3.40). Any iterate in the sequence of bounding

functions has the form:

P (n) t d, ?1 <5 0; (6.3.51)

S(17), 17 > 0.

The convolution with P1 is:

(P' * P) = J p( - s)P'(s) ds
0

= , P( - s)P'(s) ds + f ii('i - s)P'(s) ds. (6.3.52)
o rl

From equations (6.3.2) and (6.3.49), we see that the last integral in (6.3.52) is a

sum of integrals of the form:

I(7) J 0- er(,- ), Ps - I ds. (6.3.53)

With the change of variables rs - , we have

- f 0 e- p -Q' d . (6.3.54)
(P -I)! ,.,7

The integral in (6.3.54) is an incomplete gamma function. In the notation of

Abramowitz and Stegun [5.11, we have

1() = r-ere r(p, rq) (6.3.55)

r (p)

for which the connection with our notation in (2.4.11) is provided by

p! = r(p + 1). (6.3.56)

Using equations (6.3.49), (6.3.53), and (6.3.55) in (6.3.52), the complete expression

for the convolution for j7 > 0 is:

1 0 e(k+1)Y7

(P-q,)(01) E Ck r(p, (k + 1)r)
I(p) (k + i)P

+ fJ (,i - s)dP(s). (6.3.57)
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The alternating series in this result can be approximated arbitrarily closely by a

finite number of terms with the magnitude of the error bounded by that of tile first

neglected term. To approximate the incomplete gamma function, we use the con-

vergent series, continued fraction, and asymp)totic series representations given, re-

spectively, in equations (6.5.29), (6.5.31), and (6.5.32) of [5.1]. We approximate

the convolution integral with the scheme presented in equations (5.5.15). (5.5.16),

and (5.5.30) of this work.

Figure 6.1 illustrates truncated uipp er and lower bound sequences for a quad-

ratically nonlinear material with p = 1/.I. Iler we chose IT I and we have plot-

ted u (qj) = u(j- 4t) against 7/. It shows the lower bound starter of equation (6.3.42)

and the first 19 iterates of the sequence it generates, along with the upper bound

starter of equation (6.3.45) and the first 17 iterates of its sequence. For each approx-

imate iterate, 100 points were computed and plotted for qj > 0. For all figures in

this section, 50 points are plotted for q -< 0 where the alternating series solution is

shown. Figures 6.3-6.6, discussed below, were prepared with 200 points computed

and plotted for q > 0. As in the graphs of Chapter 5, the large space between the

truncated sequences is the numerical approximation to the bound within which the

solution is to be found.

We expect that a starting function which is similar to the expected form of

the solution will yield better bounds upon iteration. We now present such a starter

for an upper bound sequence. We define

hii (t) , (6.3.58)

and B 2 (11) as the solution to:

2
B201) = (P', B2)(1). (6.3.59)
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The solution for B 2 is

- ( -10) P .  (6.3.60)
(2p)!

We show that the starting function defined by:

B ( ), q qi ; (6 .3 .6 1 )B 2 (1), 11 >  il,

with
PV

, = In ( (2 pp.i and 170 = il - 1), (6.3.62)

starts a decreasing sequence upon iteration. These values of '70 and 17 produce ;t

continuously differentiable starter U-,. From the iteration scheme (6.3.41). we have

-i + UI u . (6.3.63)

- -- 1

If, for all il, iteration produces ul + it- < Uio + U.2, then iu- < u, and u- start-

a decreasing sequence. It is therefore suflicient to show that P'* uo < -10 + U-'. -,

Since P' e" = e", the result is immediate for i1 < 'l. For t > tll ,

(P* U0 )(,) = f -(s)P(,i - s) ds

f B (s)P '(I - s)ds + ] B2(s)P'(,j - s) ds
-00

f Bl(s)l't( - s) ds + f B(s)l't(?l - s) ds

- B,2(s)P '(Y - s) (Is. (6.3.64)

t0

Since B, vanishes for q < ill, we can extend the lower limit of integration in the

last two integrals above to -oo. Thus,

(I'' -U0)(',) -- J (I - B 2 )(s)'(vj - s) ds + / B 2,s'( 7 - s) ds. (6.3.65)

The last integral is (P'* B 2 ) (,) = B2(, ), according to equation (6.3.59). Therefore,
171

(P'* WON)('7) = B'(,l) + B(I - B32 (s)P'(i1  s )ds

< B2(, 1 )+ (B - B 2 )(9)P'(,1 - 8)ds, (6.3.66)
-00



since (B 1 - B 2 )(TI) > 0 for all tv $ ill and J'(,) is a decreasing function. h,, last

integral in (6.3.66) is I', (B 1 - 1I)(,1) = B (jI1) - Br2(?,) Therefore,

(P'* -o)(U, ) < B.](,tj + B I ( B)-/

< 1 (I + B I( I

B, (,) + B 2 (,j 1 ), (6.3.67)

since u 0  is continuous at ill. Now B]., is increasing, Hence, we obtain:

(P' W0)(t 1 ) < /.)(Yl) + 13o(I)

-1 ' 01(,) + i7o(, 1  (6 ,3..G

which proves the assertion.

W ith this result, it is easy to show that an upper bound starter useful fr ouir

numerical work is provided by the discontinuous function dehined as:

-( '), 'l <(7

u 0 (t~ { B (, qji q I) )1(C36u

with til and ill given in (6.3.62) and the series for i7 in (6.3.18). Figures 6.2 6 .(i

illustrate approximate bounds based upon this upper bound starter. ll Figure 6.2

(p = 1/4) with 100 points computed and plotted for Y1 > 0, we see that th ....arl

iterates are much better upper bounds than those started by the discontinuou .

exponential starter defined in equatioi (6.3.15) and illustrated in Figure 6.1

Recall, we have the exact solution for -1(r/) for all q in the single case hell

p = I. It is given in equation (6.3.16). In Figure 6.3. we cTlu ),are tho r,,ults

of 20 iterations in both lower and upper bound sequences with the exact result

to provide sone verification of our numerical scheme. The all)roxiiuate iterated

solution and the exact solution are indistinguishable. Figures 6.- 6.6 illustrate our

approximations to bounds on the solutions for p = 1/2, 1/4, and I/10.
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!.0

0 !0 20 30 40

Figure 6.2. U pper bound starter of equation (6.3.69) and 17 iterates for

p= 1/4. 'rhe ordinate variable is (ij) = -(?j ) The abscissa represents tile

IIonl-(im elsion al timec q.
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Figure 6.3. The exact solution for p 1 and the superim posed 20-th iterates in

I

Ithe upper and lower bound sequences. The ordinate variable is fi(,) = _-(T- 2).

; The ablscissa represents the non-dimensional time ?1.
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0.0 . . .. .

0 10 20 30"

Figure 6.5. "'h 0 20-th upper bound and lower bound iterates for p = 1/4. Th~e

ordinate variable is i (v) =-( - 4). The abscissa represents the non-dimensional
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Figure 6.6. The 50-th upper bound and lower bound iterates for p = 1/10. The

ordinate variable is (ti) = -(rj - 5). The abscissa represents the non-dimensional

time ?I.
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